CONSTRUCTION BID DOCUMENTS

NARRATIVE

Improve Emergency Cache

Project No. 595-11-127

Lebanon VA Medical Center Lebanon, PA

Miller-Remick LLC

1010 Kings Highway South Building One – 1st Floor Cherry Hill, New Jersey 08034 (856) 429-4000

April 10, 2013

TABLE OF CONTENTS

CHAPTER	DESCRIPTION	PAGE
	Introduction & Executive Summary	i
1	Architectural	1-1
2	Heating, Ventilating, and Air Conditioning (HVAC)	2-1
3	Electrical	3-1
4	Plumbing	4-1
5	Fire Protection	5-1
6	Structural	6-1
7	Hazardous Materials	7-1
8	Critical Path Method (CPM)	8-1

APPENDIX	DESCRIPTION	PAGE
A	Critical Path Method / Project Schedule	A-1
В	Architectural	B-1
C	Heating, Ventilating, and Air Conditioning (HVAC)	C-1
D	Hazardous Materials	D-1
E	Electrical	E-1

GENERAL

- 1. APPLICABLE LOCAL CODES
 - .1 State of Pennsylvania Uniform Construction Code
 - .2 International Code Series 2009 Edition Including
 - International Building Code (IBC)
 - International Fire Code (IFC)
 - International Fuel Gas Code (IFGC)
 - International Mechanical Code (IMC)
 - International Plumbing Code (IPC)
 - .3 International Existing Building Code 2009 Edition or Chapter 34 of IBC as selected by Design Professional
 - .4 International Fire Code 2009 Edition (as referenced by IBC-2009)
 - .5 NFPA 99 Healthcare Facilities
 - .6 NFPA 101 Life Safety Code, 2009 Edition
 - .7 NFPA 13 Standard for the Installation of Sprinkler Systems
 - .8 NFPA 72 National Fire Alarm and Signaling Code
- 2. APPLICABLE NATIONAL STANDARDS
 - .1 Barrier Free Design Guides that exceeds minimums of the Architectural Barriers Act (ABA) and the Americans with Disabilities Act (ADA) for healthcare projects.
- 3. APPLICABLE OWNER GUIDELINES
 - .1 Architectural Design Manual, August 2011 Edition
 - .2 A/E Submission Instructions for Minor and NRM Construction Program

ARCHITECTURAL DESIGN

- 1. STERILE STORAGE (ROOM SRS02)
 - .1 Renovate existing Kitchen and auxiliary spaces to create Sterile Storage Room and Clean Supply Storage Room in Building 19. The Sterile Storage Room will house medical supplies and pandemic supplies. The room is accessed through a new double door. The Sterile Storage Room also has direct access to the adjacent Clean Storage Room.
 - .2 Areas:

• Sterile Storage: 888 sf

• Total Net Area: 888 sf

- .3 Scope of Work (all rooms unless noted otherwise)
 - New Epoxy Resin Floor (remove existing flooring and adhesives, shot blast concrete floor, install new 3/16 inch thick resinous floor similar to VA standard RES-3 with additional epoxy topcoat in orange peel finish for mopable surface). Repair and restore concrete subfloor after demolition of existing flooring and prior to the installation of new flooring.
 - New Acoustical Ceiling Panels in suspended grid system (Armstrong Health Zone Ultima). Ceiling height: 8'-4"
 - Existing Glazed Tile walls to be furred out with 2-1/2" metal studs to accept new Gypsum Board. Gypsum Board walls to receive epoxy paint finish.
 - Wall protection on all exposed surfaces. Heavy duty protection where likely to be impacted by forklift or carts.
 - Corner protection on all exposed corners.
 - New Fire Rated Doors.
 - 3'-0" gypsum board window pocket at each existing windows with 11'-0" head height.
 - New Fire Rated Window
 - New plastic laminate work station.
- .4 Details

- Enlarge existing door opening to corridor to accommodate new double door.
- Existing walls to be extended to underside of deck in order to achieve one hour rating.
- Remove the three existing walk-in freezers in their entirety.
- Remove existing cove tile base to allow for installation of furring strips or metal studs on all existing glazed tile walls.
- Existing exterior windows to remain.

2. CLEAN SUPPLY STORAGE (ROOM SRS01)

.1 Renovate existing Kitchen and auxiliary spaces to create Sterile Storage Room and Clean Supply Storage Room in Building 19. The Clean Supply Storage Room will house medical supplies and pandemic supplies. The room is accessed through a new double door. The Sterile Storage Room also has direct access to the adjacent Clean Storage Room.

.2 Areas:

• Clean Supply Storage: 1078 sf

• Total Net Area: 1078 sf

- .3 Scope of Work (all rooms unless noted otherwise)
 - New Epoxy Resin Floor (remove existing flooring and adhesives, shot blast concrete floor, install new 3/16 inch thick resinous floor similar to VA standard RES-3 with additional epoxy topcoat in orange peel finish for mopable surface). Repair and restore concrete subfloor after demolition of existing flooring and prior to the installation of new flooring.
 - New Acoustical Ceiling Panels in suspended grid system (Armstrong Health Zone Ultima). Ceiling height: 8'-4"
 - Existing Glazed Tile walls to be furred out to accept new Gypsum Board. Gypsum Board walls to receive epoxy paint finish.
 - Wall protection on all exposed surfaces. Heavy duty protection where likely to be impacted by forklift or carts.
 - Corner protection on all exposed corners.
 - New Fire Rated Doors.

- New Fire Rated Window
- New plastic laminate work station and casework.
- 3'-0" gypsum board window pocket at each existing windows with 11'-0" head height.
- Existing Glazed Tile walls to be furred out with 2-1/2" metal studs to accept new Gypsum Board. Gypsum Board walls to receive epoxy paint finish.

.4 Details

- Remove existing corridor door and infill wall. Match existing glazed tile finish on corridor side of new wall.
- Remove portion of existing corridor wall to accommodate new double fire rated door.
- Existing walls to be extended to underside of deck in order to achieve one hour rating.
- Remove existing cove tile base to allow for installation of furring strips or metal studs on all existing glazed tile walls.
- Existing exterior windows to remain.
- Construct new demising wall between Clean Supply Storage and existing Elevator Machine Room.
- Construct new rated demising wall between Clean Supply Storage and Sterile Storage Room. New fire rated double door.

3. EXISTING ELEVATOR MACHINE ROOM, MECHANICAL ROOM AND EXISTING TOILET ROOM

.1 Provide code compliant egress from existing elevator machine room and mechanical room through the existing toilet room and to the corridor in Building 19. Demolish plumbing fixtures and walls in existing toilet room. Enlarge existing toilet room door opening to accommodate egress door. Provide mechanical cooling in the existing Elevator Machine Room and Mechanical Room. The installation of new mechanical equipment/ductwork will require the demolition of the existing ceiling. New ceiling will be installed.

.2 Areas:

• Mechanical Room: 244 sf

- Elevator Machine Rm: 110 sf
- Total Net Area: 354 sf
- .3 Scope of Work (all rooms unless noted otherwise)
 - Demolish plumbing fixtures and portions of the existing walls in existing toilet room.
 - Remove portion of existing wall in Mechanical Room to accommodate new opening to former toilet room.
 - Enlarge existing door opening in former toilet room to accommodate egress door.
 - Remove existing gypsum board ceilings in Elevator Machine Room and adjacent Mechanical Room to allow for installation of cooling equipment/system.
- .4 Details
 - Install egress door for enlarged Mechanical Room.
 - Install new Acoustic Panel Ceilings (Armstrong Fissured 755).

4. EXISTING VENDING ROOM

- .1 Provide mechanical cooling in the existing Vending Room in Building 19. The installation of new mechanical equipment/ductwork will require the demolition of the existing ceiling. New acoustic ceiling will be installed.
- .2 Areas:
 - Existing Vending: 114 sf
 - Total Net Area: 114 sf
- .3 Scope of Work (all rooms unless noted otherwise)
 - Remove existing ceiling system.
 - Install new Acoustic Panel Ceilings (Armstrong Fissured 755).
- 5. BULK STORAGE AREA (ROOM SRS03)

.1 Renovate and subdivide existing Storage Room in Building 22. Housekeeping Storage will house general janitorial supplies and equipment. The room is accessed through a new double door.

.2 Areas:

• Bulk Storage Area: 2349 sf

• Total Net Area: 2349 sf

- .3 Scope of Work (all rooms unless noted otherwise)
 - New VCT Floor with rubber base (Construct new floor system to match the floor height of the existing corridor floor). Repair and restore concrete subfloor after demolition of existing flooring and prior to the installation of new flooring.
 - New Acoustical Ceiling Panels in suspended grid system. Ceiling height: 8'-4"
 - Gypsum Board walls to receive paint finish.
 - Wall protection on all exposed surfaces. Heavy duty protection where likely to be impacted by forklift or carts.
 - Corner protection on all exposed corners.
 - New Fire Rated Doors.

.4 Details

- Remove existing corridor door and expand opening to allow for new double door.
- Remove existing corridor door and infill with gypsum board partition. Corridor side of wall to match existing adjacent finishes.
- Existing walls to be extended to underside of deck in order to achieve one hour rating.
- Existing exterior windows to remain.
- Construct new rated demising wall between Housekeeping Storage and Office Suite.
- Construct new floor structure to align with existing corridor floor.

6. OFFICE SUITE (ROOMS OFA01, OFA02, OFA03, OFA04, OFA05, OFA06, OFA07, OFA08)

.1 Renovate and subdivide existing Storage Room in Building 22 to house an office suite with seven individual offices and cubicles.

.2 Areas:

•	Open Office Area:	1239 sf
•	Office:	143 sf
•	Office:	134 sf
•	Office:	125 sf
•	Office:	129 sf
•	Office:	111 sf
•	Office:	109 sf
•	Office:	130 sf
•	Total Net Area:	2120 sf

- .3 Scope of Work (all rooms unless noted otherwise)
 - New Carpet with rubber base (Construct new floor system to match the floor height of the existing corridor. Prepare new flooring system for installation of new carpeting).
 - New Acoustical Ceiling Panels in suspended grid system. Ceiling height: 8'-4". (Armstrong Ultima).
 - Walls to be gypsum board with painted finish. Sound attenuation batt insulation in wall cavity to achieve STC 40 rating.
 - Furr out all existing walls with 7/8" metal hat channel and 5/8" gypsum board.
 - Corner protection on all exposed corners.
 - New fire rated demising wall between Office Suite and Housekeeping Storage
- .4 Details

- Remove portions of the existing walls to accommodate new door openings.
- Remove existing corridor doors and infill with gypsum board partition. Corridor side of wall to match existing adjacent finishes.
- Existing exterior windows to remain.
- Construct new rated demising wall between Housekeeping Storage and Office Suite.
- Construct new partition walls for the individual offices.
- Construct new floor structure to align with existing corridor floor.
- Fur out all existing walls with 7/8" metal hat channel and 5/8" gypsum board.

MECHANICAL

1. GENERAL

.1 Building 19

- This project will provide the renovation and expansion of the Emergency Cache storage areas at the VA Medical Center in Lebanon, PA. The mechanical design will bring new and existing spaces up to current VA design criteria.
- The project will provide the design for the upgrade of existing storage areas totaling approximately 2,230 square feet to separate clean and sterile storage areas. The project will also include the cooling of existing adjacent spaces (elevator machine room, mechanical room and vending room) totaling approximately 530 square feet.

.2 Building 22

- This project will provide the renovation and expansion of the EMS storage areas and provide a new office area at the VA Medical Center in Lebanon, PA. The mechanical design will bring the new and existing spaces up to current VA design criteria.
- The project will provide the design for the upgrade of existing storage areas and a new office area totaling approximately 4,700 square feet.

2. SCOPE

- .1 The renovation and expansion of storage areas include the following locations and scope:
 - <u>Building 19</u> Emergency Cache Clean and Sterile Storage Rooms The existing air handling unit, AC-3-19, currently serving the space will be modified and dedicated to serve the new clean and sterile storage rooms only. Both rooms will be designed to meet current VA design requirements for Satellite SPD Storage.
 - <u>Building 19</u> Vending and Mechanical Rooms Provide each room with a (1-1/2) ton, 2-pipe, cooling only chilled water fan coil unit mounted in the ceiling. Fan coil unit to have ducted supply and return. Provide return air filter grille. Individual outside air ductwork will not be provided to each fan coil unit. Cooling coil condensate piping to tie into existing cooling coil condensate drain line located above adjacent corridor ceiling. Controls will tie into the existing Delta control system.

- <u>Building 19</u> *Elevator Machine Room* Provide a wall mounted (2) ton split system heat pump with inverter technology to serve the room. The condensing unit to be mounted outside, on the exterior wall, 2'0" above grade. Demolish existing fan and associated filter rack. Demolish existing baseboard connector. Blank off louvers and provide wall mount heat pump in location vacated by demolished fan. Cooling coil condensate piping to run through exterior wall and spill to grade. Unit to be on emergency power.
- <u>Building 19</u> *Tele/Data Room* Per Lebanon VA, room will be cooled under separate contract.
- Building 22 EMS Storage: Provide a new variable volume, return air AHU to serve both the new EMS storage area and the new office suite. The storage area will be designed to meet current VA design requirements for Non-Sterile Storage, except, per VA facilities, unit will not be designed for 100% OA.
- <u>Building 22</u> *Office Suite*: Provide a new variable volume, return air AHU to serve both the new EMS storage and the new office suite. The office suite will be designed to meet current VA design requirements.

3. EXISTING CONDITIONS

- .1 Building 19
 - EMS Storage The former kitchen area is cooled and heated by a single zone, variable volume, air handling unit (AC-3-19) mounted on roof dunnage directly above the project area. The cooling medium is chilled water and the heating medium is steam. A general building exhaust fan (located outside the project boundary) exhausts the toilet room, janitor's closet and (2) small storage rooms that exit directly into the EMS storage area (within the former kitchen boundary). Per VA facilities, the supply and return fan VFD's for AC-3-19 are set to run as constant volume.
 - Elevator Machine Room Elevator equipment is cooled by bringing outside air, through an intake louver and filter, directly into the room and exhausting it through a wall-mounted fan and louver. Heating is provided by a wall mounted convector.
 - Elevator Machine Room Office/Storage Area Room adjacent to elevator machine room and EMS storage area is cooled and heated from AC-3-19.
 - Vending Area Room adjacent to EMS storage area is cooled and heated from AC-3-19.

• Tele/Data Room – Room adjacent to EMS storage area brings transfer air under the door from adjacent Vending Room and exhausts through a general building exhaust fan located outside the project boundary.

.2 Building 22

• Storage areas for EMS, Electrical, and Emergency Cache are heated and cooled through (6) ceiling mounted, 4-pipe fan coil units. The cooling medium is chilled water and the heating medium is low pressure steam piped to each unit. Cooling coil condensate is manifolded together and piped to the exterior at a height above the windows. Outside air is ducted to (3) of the fan coils from an existing energy recovery unit located on the third floor roof.

4. DESIGN APPROACH

- .1 Each area was analyzed for design approach requirements in the DVA, 'HVAC Design Manual for New, Replacement, Addition, and Renovation of Existing VA Facilities,' for *Supply, Processing, and Distribution* (SPD) areas. The following preliminary design approach will be utilized for each type of storage space:
- .2 **Building 19** Sterile Storage and Clean Storage Areas
 - Indoor design conditions: 72-78 degree F design temperature for heating and cooling seasons.
 - Humidity: In order to maintain the spaces within a range of 20% to 60% relative humidity during all seasons, an electrode steam humidifier will be provided for each room.
 - Minimum of ten air changes per hour (10 ACH).
 - Modify existing AC-3-19 for variable volume control.
 - An offset between supply and return air quantities will maintain positive air pressurization within each space.
 - New supply and return ductwork will be run from existing AC-3-19 to each room.
 - Each room will be designed with a VAV control box and electric reheat coil with SCR technology for individual temperature control.
 - A wall mounted steam-to-clean steam generator (type Nortec; model SSG) will be provided for each VAV box. Steam and condensate branch piping to the generators will be from basement floor below. Steam distribution

piping will be routed from each generator to a duct-mounted steam humidifier (type Nortec; model SAM-E; short absorption manifold) installed downstream of each VAV box. Ductwork 3'0" downstream of humidifier to be stainless steel.

- Each room to be provided with (2) one and a half ton split system heat pumps with inverter technology on emergency power for conditions when chiller plant is down. (1) Air cooled condensing unit will serve both heat pumps per room. Cooling coil condensate piping to run through exterior wall and spill to grade. Condensing units to be mounted outside, on the exterior wall, 2'0" above grade.
- New DDC controls to tie into existing building/site Delta control system.
- Refer to Appendix for sketches and load calculations.

.3 **Building 22** – Non-Sterile Storage

- A new variable volume, return air, AHU will be designed to serve both the new EMS storage and new office suite within Building 22. The unit will be located on dunnage, 3'0" of the ground (per Lebanon VA site standards) at the exterior of the building adjacent to the project area. Ductwork will run outside and exposed before entering the project area overhead and above the ceiling.
- Per VA, outside air ductwork is not requested to extend up the side of the building to 30'0" off of the ground.
- Chilled water, steam and condensate will be delivered to the new unit via the basement crawl space.
- The new spaces will not be designed for humidity control. Space will be left in the AHU for a future humidifier.
- Each enclosed office to have a dedicated VAV control box with a hot water reheat coil for individual temperature control. Remaining open office space to be controlled through a single VAV control box with hot water reheat coil.
- The new storage area will be served by two variable air volume (VAV) control boxes with hot water reheat coils for temperature control.
- A new dual pump skid with steam-to-hot water heat exchanger will be located in the basement of Building 22 and will take medium pressure steam from the site loop and deliver heating hot water to the new first floor reheat coils.

- New DDC controls to tie into existing building/site Delta control system.
- AHU shall be designed to provide design CFM with the fan VFD's set to 80%.
- Refer to Appendix for sketches, load calculations, and AHU cut sheet.
- 4. Per VA, seismic restraints are not required.

5. HEATING PLANT

.1 The existing Lebanon VA Medical Center utilizes high, medium, and low pressure steam as a medium to supply heat to the various systems throughout the campus. Steam piping is run to each building through a series of tunnels and crawl spaces, and will be tapped for the new systems being provided as part of this renovation project. Refer to the sketches for additional details.

6. COOLING PLANT

.1 The existing Lebanon VA Medical Center utilizes chilled water as a medium to supply cooling to the various systems throughout the building. Chilled water piping is run to each building through a series of tunnels and crawl spaces, and will be tapped for the new systems being provided as part of this renovation project. Refer to the sketches for additional details.

ELECTRICAL

1. GENERAL

.1 Building 19

- This project will provide the renovation and expansion of the Emergency Cache storage areas at the VA Medical Center in Lebanon, PA. The electrical design will bring new and existing spaces up to current VA design criteria.
- The project will provide the design for the upgrade of existing storage areas totaling approximately 2,230 square feet to separate clean and sterile storage areas. The project will also include the cooling of existing adjacent spaces (elevator machine room, mechanical room and vending room) totaling approximately 530 square feet.

.2 Building 22

- This project will provide the renovation and expansion of the EMS storage areas and provide a new office area at the VA Medical Center in Lebanon, PA. The electrical design will bring the new and existing spaces up to current VA design criteria.
- The project will provide the design for the upgrade of existing storage areas and a new office area totaling approximately 4,700 square feet.

2. SCOPE

- .1 The renovation and expansion of storage areas include the following scope:
 - Lighting: Building 19 shall be provided with new, fluorescent, recessed, and sealed fixtures. The fixtures will be designed to separate internal lighting components from the surrounding environment to prevent contamination of the environment with dirt, dust, and moisture. Lighting levels will be in accordance with VA Design Standards of 30 foot candles for clean and sterile supplies. Light switching shall be controlled with switching at the main doors and shall override ceiling mounted occupancy sensors. Building 22 shall follow the VA design guide for office fixtures and switching.
 - <u>Card Readers</u>: Proximity card readers shall be provided for secure areas. The card readers shall be GE models per the VA request to match existing card readers at the facility.

- <u>Convenience Receptacles</u>: Convenience receptacles shall be provided every 13 feet in the clean supply and sterile storage areas of Building 19. Building 22 shall follow the VA design guide placement of receptacles for offices.
- <u>Mechanical Systems</u>: For Buildings 19 and 22, all new mechanical systems will be provided with new branch circuits and local disconnect switches as required in accordance with VA Electrical Design Standards.
- <u>H.V.A.C.</u>: Building 19 has an existing air handling unit, AC-3-19. It shall be upgraded to have (variable frequency drives) VFD's on its supply and return fans. Building 22 shall have a new air handling unit that shall come with VFD's.
- Phone and Data: For Building 19, phone and data outlets shall be provided at the doors and shall be provided every 13 feet in the clean supply and sterile storage areas next to receptacles. Building 22 shall follow the VA electrical design guide for offices. For both buildings, all data and phone outlets shall be tied into each building's existing system.
- <u>Fire Alarm</u>: For Building 19, strobes and voice mass notification speakers shall be placed in the storage areas, mechanical room, elevator machine room and vending room. Heat and smoke detection shall be provided in the elevator machine room. Smoke detection shall be provided in the machine room for the elevator landing smoke detector requirements. All new devices shall be tied into the building's existing fire alarm system. Building 22 shall be provided with speaker/strobes in the general office area and in the storage areas. All new devices shall be tied into the building's existing fire alarm system.
- <u>Emergency power</u>: the following equipment in the Building 19 renovation area shall be placed on emergency power. This includes:
 - Convenience receptacles
 - Lighting
 - The existing AHU currently serving the space.
 - The new split system DX units for the clean and sterile storage areas.
 - The new split system DX unit for the existing elevator machine room.

PLUMBING

1. GENERAL

- .1 The plumbing systems will be in accordance with the DVA Plumbing Design Manual; Revised April 2010
- .2 The plumbing codes and standards planned to be utilized are the latest editions of the following;
 - International Building Code (IBC)
 - International Fire Code (IFC)
 - International Fuel Gas Code (IFGC)
 - International Mechanical Code (IMC)
 - International Plumbing Code (IPC)

2. EXISTING CONDITIONS

- .1 Building 19
 - The project boundary encompasses first floor areas and rooms in Building 19, formally used as a kitchen, and currently used as EMS storage. Much of the kitchen equipment has been removed; however various associated piping has been abandoned-in-place within the ceiling cavity.
 - Sanitary piping to existing floor drains runs on the basement level in crawl spaces located below the floor.
- .2 Building 22
 - There is currently no plumbing piping/equipment located within the project boundary of Building 22.

3. SCHEMATIC DESIGN APPROACH

- .1 Building 19
 - The project scope in Building 19 consists of demolition work only. There is no new plumbing work in Building 19.

• Demolition consists of removing an existing toilet, three sinks, multiple floor drains and all associated piping back to existing mains and capped air water/tight. Piping to be insulated to match existing.

.2 Building 22

• There is no plumbing scope (either demolition or new work) in Building 22.

FIRE PROTECTION

1. GENERAL

- .1 The fire alarm and fire protection systems will be in accordance with the DVA Fire Protection Design Manual; Sixth Edition; Revised September 2011.
- .2 The fire protection codes and standards planned to be utilized are the latest editions of the National Fire Codes (NFC) as published by the National Fire Protection Association (NFPA). Where fire alarm or fire protection features are not addressed by the NFC, the International Building Code (IBC) or other referenced standard shall be used. For the renovations, the following NFC standards for the base code references.
 - NFPA 101 Life Safety Code
 - NFPA 13 Standard for the Installation of Sprinkler Systems
 - NFPA 72 National Fire Alarm and Signaling Code

Should the codes from the International Code Council (ICC), need to be consulted, the following form the base code references.

- International Building Code (IBC)
- International Fire Code (IFC)
- International Fuel Gas Code (IFGC)
- International Mechanical Code (IMC)
- International Plumbing Code (IPC)

2. EXISTING CONDITIONS

- .1 The design of the Improve Emergency Cache renovation will integrate into the systems and services of the existing VA Medical Center campus.
 - Fire Alarm System Existing initiation devices and notification devices are connected to the FACP either directly or through Fire Alarm Terminal Cabinets (FATC). The existing fire alarm system is addressable, and any new devices will be compatible with the addressable system.

• Fire Protection System – Building 19 and Building 22 are fully sprinklered. The existing heads and piping will be modified as necessary to support the future project areas. Existing sprinkler piping within the Building 19 project boundary area has been identified as CPVC piping. Lebanon VA Facilities has indicated other similar installations on campus with CPVC piping were able to be modified without being replaced. Renovated areas are to be utilized as storage and thus classified as ordinary hazard per NFPA. CPVC piping is only rated for light hazard areas therefore it should be replaced with acceptable rated (steel) pipe.

3. SCHEMATIC DESIGN APPROACH

.1 Building 19

- The fire alarm system for the renovation will connect to, and extend from, the existing building fire alarm system.
- The fire protection system for the renovation will connect to, and extend from, the existing building wet pipe sprinkler fire suppression system.
- The renovated areas shall be designed as an NFPA 13, Ordinary Hazard Group 1 system hydraulically calculated utilizing the area density method by the contractor for 0.15 gpm per sq.ft over 1500 sq.ft. Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply (to be determined).
- The existing CPVC piping within the new storage area will be removed. The new fire protection system shall utilize all Schedule 40 pipe and fittings. All other components shall be rated for 300 psi. Sprinkler heads in areas with acoustic tile ceilings shall be chrome plated, recessed heads with chrome plated steel escutcheons. Areas with unfinished exposed ceilings will be provided with rough brass upright heads. Sprinklers throughout to be ordinary temperature rated except for electrical rooms/closets which shall be intermediate temperature rated and mechanical rooms to be provided with high temperature rated heads.

.2 Building 22

- The fire alarm system for the renovation will connect to, and extend from, the existing building fire alarm system.
- All existing sprinkler piping within the project boundary to be demolished back to nearest main at project boundary. The new fire protection system for the renovation areas will connect to, and extend from, the existing building wet pipe sprinkler fire suppression system.

- The renovated areas shall be designed as an NFPA 13, Ordinary Hazard Group 1 system hydraulically calculated utilizing the area density method by the contractor for 0.15 gpm per sq.ft over 1500 sq.ft. Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply (to be determined).
- The new fire protection system shall utilize all Schedule 40 pipe and fittings. All other components shall be rated for 300 psi. Sprinkler heads in areas with acoustic tile ceilings shall be chrome plated, recessed heads with chrome plated steel escutcheons. Areas with unfinished exposed ceilings will be provided with rough brass upright heads. Sprinklers throughout to be ordinary temperature rated except for electrical rooms/closets which shall be intermediate temperature rated heads.

STRUCTURAL

- 1. Applicable Codes and Standards
 - International Building Code 2009 Edition
 - American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures - ASCE 7-05
 - Department of Veterans Affairs Seismic Design Requirements H-18-8
 - VA Program Guide PG-18-15 Volume C
 - VA Structural Design Manual For Hospital Projects August 2009
 - American Concrete Institute Building Code Requirements for Structural Concrete – ACI 318-08
 - American Institute of Steel Construction Manual of Steel Construction -Thirteenth Edition - AISC 360-05
 - American Welding Society Structural Welding Code for Steel ASW D1.1
 - American Society for Testing and Materials ASTM Standards

2. Design Loads

1. Dead loads for the purpose of structural design are the actual self-weight of the permanent building construction materials. In addition to the self-weight of the structure, the following additional dead loads are to be included in the design:

•	Partitions in Administrative Services Area:	20 PSF

• HVAC Units 5,000 LBS (+/-)

2. Design live loads to be supported are as follows:

•	Administrative Services	80 PSF
---	-------------------------	--------

• Corridors 100 PSF

Light Storage 125 PSF

• Mechanical Areas 150 PSF

3.	Snow	Load:

•	Ground Snow Load (Pg)	30 PSF
•	Snow Importance Factor (Is)	1.2
•	Exposure Factor (Ce)	1.0
•	Thermal Factor (Ct)	1.2

4. Wind Load:

•	Basic Wind Velocity	90 MPH (3-second gust)
•	Exposure Category	В
•	Wind Importance Factor (Iw)	1.15

5. Seismic Load:

•	Occupancy Category	IV
•	Seismic Importance Factor (Ie)	1.5
•	0.2 Second Spectral Response Acceleration	Ss 0.228g

•	1.0 Second Spectral Res	sponse Acceleration	S1 0.057g

•	Seismic Design Category	C

• Seismic Force-Resisting System: N/A

Soil Site Classification

- Analysis Procedure: N/A
- 6. All load combinations shall be in conformance with the listed codes and standards.

 \mathbf{C}

3. Structural Systems

1. Building 19:

• New mechanical equipment will be supported from the existing structure. Penetrations through the existing structure may be required to provide a pathway for mechanical services.

2. Building 22:

- The proposed project area was originally constructed as a bowling alley, and is recessed several feet below the adjacent finished floor elevation. The existing recessed floor is constructed of cast-in-place concrete, and a wood-framed platform has been built over a portion of this concrete floor. The existing wood-framed floor platform is proposed to be removed, with a new elevated slab constructed over the existing recessed concrete floor structure. The new slab will be supported on structural steel framing, and will match the existing floor elevation.
- A new HVAC unit is proposed to be located outside the building on grade, adjacent to the project area. The unit is proposed to be elevated on steel dunnage framing, over an exterior concrete slab on grade. It is understood by the design team that this support configuration is the preference of the DVA Lebanon.
- Penetrations through the existing structure may be required to provide a pathway for mechanical services.

4. Structural Materials

1. Concrete

- Minimum Compressive Strength: f'c=4,500 psi
- Maximum Water-Cementitious Materials Ratio: 0.45
- Minimum Cementitious Materials Content: 500 lb/cu. yd.
- Air Content: 4.5 to 5.5 percent
- Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
- Normal-Weight Aggregates: ASTM C 33, coarse aggregate or better, graded. Maximum Coarse-Aggregate Size: 1 1/2 inch nominal.
- Air-Entraining Admixture: ASTM C 260.
- High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.

2. Structural Steel

- Rectangular and Square HSS: ASTM A 500/A 500M, Grade B (Fy = 46 ksi).
- Round HSS: ASTM A500, Grade B (Fy = 42 ksi).

- Channels, Angles, M, S-Shapes: ASTM A 36/A 36M (Fy=36 ksi).
- Plate: ASTM A 36/A 36M (Fy=36 ksi).
- Wide Flange Shapes: ASTM A992 (Fy = 50 ksi)

5. Structural Special Inspections

1. In accordance with Section 1704 of the international building code, and all applicable state and local requirements, an independent approved agency shall make periodic and/or continuous inspections of the construction progress in accordance with the following requirements:

Steel Construction Section 1704.3, Table 1704.3 Concrete Construction Section 1704.4, Table 1704.4

HAZARDOUS MATERIALS

1. GENERAL

- A previous hazardous material investigation associated with Building 19 and Building 22 was performed in August and September of 2010. The report was sent to Miller-Remick by the Lebanon VA, and has been included with this design narrative in Appendix E.
- As part of this project, a new investigation was performed within both Building 19 and Building 22. The reports of which are included in Appendix E.

2. ASBESTOS CONTAINING MATERIALS

- .1 The 2010 hazardous materials inspection appears to have been limited solely to visually apparent suspect ACM, and did not include intrusive means of access such as opening wall and ceiling cavities to identify hidden and concealed ACM within wall cavities and chases.
- .2 As part of this project, samples were taken from floors, walls, wall cavities and chases, ceiling cavities, as well as pipe insulation and submitted for testing.

CRITICAL PATH METHOD (CPM)

1. PROJECT MASTER SCHEDULE

- .1 Refer to Appendix A for the Project Master Schedule, which shows the projected overall schedule from the Design Phase Services Notice-To-Proceed (NTP), to the final turnover after completion of the design.
- .2 The schedule is not final and will be expanded and updated throughout the design and construction of this project.

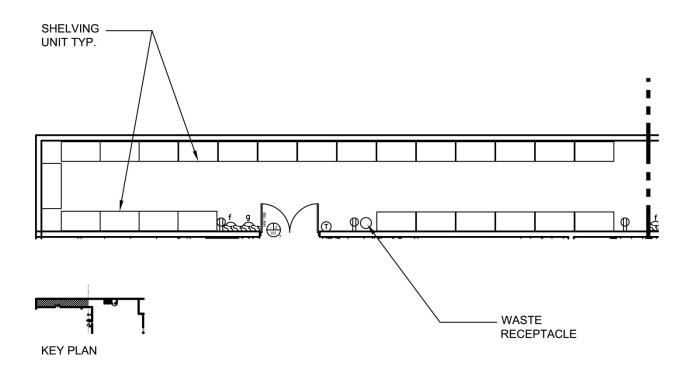
2. PHASING

- .1 Phase I Building 19 Temporarily Relocate Existing EMS Storage
 - Prior to construction, temporarily relocate EMS storage items in Building 19 by consolidating them into underutilized space already within the existing Building 22 EMS storage area as well as into alternate locations within the VA. Possible locations within Building 19 include the adjacent office space outside of the existing elevator machine room and the adjacent storage room west of the elevator machine room.
- .2 Phase II Building 19 Emergency Cache
 - Once Phase I has been substantially completed, demolition and construction can begin in Building 19.
- .3 Phase III Building 19 and 22 Emergency Cache
 - Once Phase II has been substantially completed, Emergency Cache items currently stored within Building 22 can be relocated into the new clean and sterile storage areas of the new Emergency Cache within Building 19.
- .4 Phase IV Building 22 EMS Storage
 - Once Phase III has been substantially completed, EMS items currently stored in Building 22 can then be moved to the space vacated by Emergency Cache in Building 22 so demolition and construction can begin on the new EMS storage area within Building 22.
- .5 Phase V Building 22 EMS Storage
 - Once Phase IV has been substantially completed, EMS storage items temporarily housed in the existing Emergency Cache area in Building 22 can be moved to the new EMS storage area in Building 22.

- .6 Phase VI Building 22 Office Suite
 - Once Phase V has been substantially completed, demolition and construction can begin on the Office Suite within Building 22.

APPENDIX A

CRITICAL PATH METHOD (CPM) PROJECT SCHEDULE

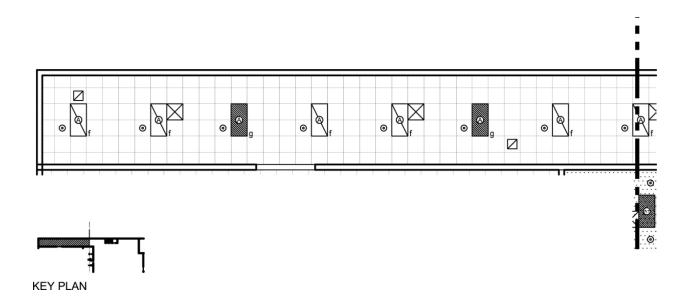

File: 2013-04-10 595-11-127 Leb Emerg Cache Construction Bid Documents Schedule mon	Leb Emerg	4-10 595-11-127	File: 2013-0	Page 1			Project Number 0499-0020	Proje
				3/14/14	3/14/14	1 day	Final Inspection	42
				3/13/14	3/7/14	5 days	Final cost analysis	4
				3/13/14	2/28/14	10 days	As-built drawings/ O&M Manuals	ů
				3/6/14	2/28/14	5 days	Develop Punch List	3 8
				2/2//14	2/2//14	- uay	- I d'inigai niapection	3 1
FunchispCloseout				3/14/14	2/2//14	12 days	Pro-final inspection	37
				2/20/14	0/29/13	150 days	Pinghlight Consuderior	3
			- -	8/28/13	8/22/13	130 J.W.K		35
				0/00/10	250220	A LA	-	34
	ım			7/10/13	6/13/13	4 WKS	Outprillial Review	33
				1 4		ior aayo		
	PHASE C	CONSTRUCTION PHASE		3/14/14	6/13/13	197 davs	CONSTRUCTION PHASE	31 2
				6/5/13	5/30/13	1 wk	Award Contract	29
	, B			5/29/13	5/16/13	2 wks	Evaluate Bids	28
	ASE ¶	AWARD PH		6/5/13	5/16/13	15 days	A	
							I	I
	P			5/15/13	4/25/13	3 wks	Bid Period	25
				4/24/13	4/11/13	2 wks	Advertise for Bid	24
		BID PHASE;		5/15/13	4/11/13	25 days	BE	L
• • • •								\perp
	∵ ◀			4/10/13	4/5/13	4 days	Prepare Design Documents	21
		100% BID DOCUMENTS	100% BID	4/10/13	4/5/13	4 days	100% BID DOCUMENTS	
		K		61/0/4	3/20/13	/ uays	V C L'OVIGW	16
		ارو		AFRIAS	2/20/12	7 days	VA Review	18
		9 1		4/1/13	3/21/13	8 days	Prepare Design Documents	17
		NT PHASE	100% DESIGN DEVELOPMENT PHASE	4/5/13	3/21/13	12 days	100% DESIGN DEVELOPMENT PHASE	
	•••	<u>le</u>		0,70	9	o aujo		귥
				3/20/13	3/11/13	8 days		14
			-	3/13/13	2/14/13	20 days	Prepare Design Documents	13
		ASE	75% DESIGN DEVELOPMENT PHASE	3/20/13 75%	2/14/13	25 days	75% DESIGN DEVELOPMENT PHASE	
				2,0,12	17/13/13	i o uaya	-	==
	•••	\		2/8/42	1/01/13	15 days		6
	,,,			1/18/13	12/20/12	22 days	Prepare Design Documents	g
		Cuttingeness.	ESIGN DEVELOPMENT PHASE	2/8/13 ESIGN	12/20/12	37 days	25% DESIGN DEVELOPMENT PHASE	∞
	••••			12/19/12		108 days	VA Review	7 0
				7/20/12	6/15/12	26 days	Prepare Design Documents	CTI
			The state of the s	12/19/12		134 days	OCHEMATIC DESIGN PHASE	1
				6/15/12 X	6/15/12	1 day	Kick-Off Meeting	
ON CONTRACT ON					6/15/12	1 day	Notice to Proceed	
Qtr 3, 2013 Qtr 4, 20	Otr 2, 2013	Qtr 1, 2013	Otr 3, 2012 Otr 4, 2012	Finish 12	Start	Duration	Task Name	5
			1C 127	Lebanon, PA VAMC VA Project 595-11-127	Lek VA P			
and the second s	44904		Cache	Improve Emergency Cache	Improv	an annual	Miller-Remick LLC	Mille

APPENDIX B

ARCHITECTURAL

Sterile and Non-Sterile Storage Area (Surgery) (ORSS1)

Floor Plan


NOTE: Guide plates are graphical representations of selected room types, i illustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Scale: 3/32" =1'-0"

Sterile and Non-Sterile Storage Area (Surgery) (ORSS1)

Reflected Ceiling Plan

NSF (NSM) per Space Criteria

M2 1 0 2'-8" 5'-4" 10'-8"Ft

Scale: 3/32" =1'-0"

NOTE: Guide plates are graphical representations of selected room types, i illustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Sterile and Non-Sterile Storage Area (Surgery) (ORSS1)

Design Standards

ARCHITECTURAL	
Ceiling:	AT (SP)
Ceiling Height:	9'-0" (2700 mm)
Wall Finish:	GWB (SC)
Wainscot:	
Base:	WSF
Floor Finish:	WSF
Slab Depression:	
Sound Protection:	
Notes:	

SPECIAL EQUIPMENT

Wall Protection

LIGHTING

General: 20 FC – 0.5 W/SF (MIN) Special: As Shown Notes:

- Fixture A: 2'x4' (600 mm x 1200 mm) recessed, grid mounted fluorescent light fixture, UL listed for wet location, prismatic lens with gasketing, w/ F32T8 lamps 3500•K, CRI=70 (minimum).
- The foot-candle level is average maintained.
- Provide ballasts per fixture for desired switching configuration. To provide a uniform lighting level, switch inner lamp(s) on first switch and outer lamps on second switch.
- 4) Exact quantity, location, and lamping of light fixtures shall be chosen to meet the foot-candle requirement.

POWER

General: As Shown Emergency: As Shown Notes: --

COMMUNICATION/SPECIAL SYSTEMS	
Data:	Yes
Telephone:	Yes
Intercom:	
Nurse Call:	
Public Address:	
Radio/Entertainment:	
MATV:	
CCTV:	
MID:	
Security/Duress:	
VTEL:	
VA Satellite TV:	
Notes:	

HEATING, VENTILATING AND AIR CONDITIONING

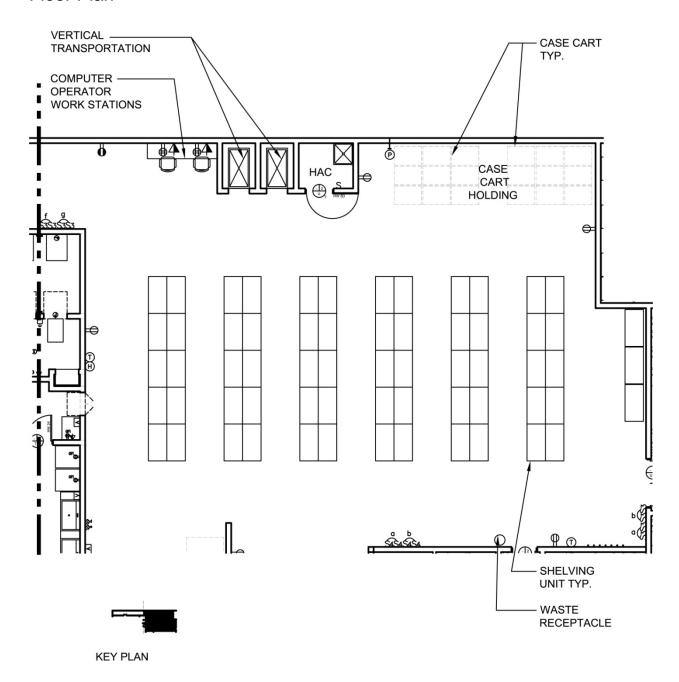
Inside Design Conditions:

Dry-Bulb Temperature: 73F
(23C)
Relative Humidity: 30% - 55%
Minimum Total Air Changes
per Hour:
Room Air Exhaust Required: Yes, 100%
Special Exhaust or General
Exhaust:

Room Air Return Permitted: No Room Air Balance: Positive (+) Notes:

PLUMBING AND MEDICAL GASES

Cold Water:
Hot Water:
Laboratory Air:
Laboratory Vacuum:
Sanitary Drain:
Reagent Grade Water:
Medical Air:
Medical Vacuum:
Oxygen:
Notes:

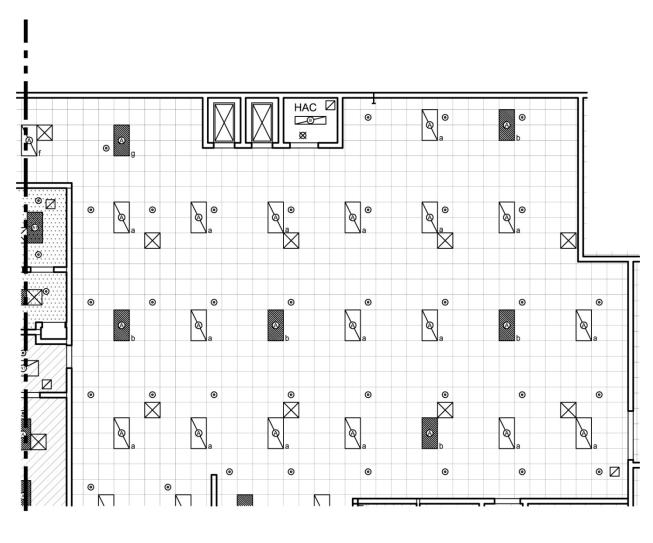


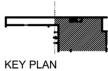
Sterile and Non-Sterile Storage Area (Surgery) (ORSS1)

Equipment List

JSN	SYMBOL	QTY	Al	DESCRIPTION
		AR		Shelves, Freestanding, Open Wire, on Wheels Freestanding open wire shelves on wheels. Bottom shelf is to be solid and 8" from the floor.
A5145		1	CC	Hook, Garment, Double, Stainless Steel, Surface Mounted A surface mounted, satin finish stainless steel, double garment hook. Equipped with a concealed mounting bracket that is secured to a concealed wall plate. For general purpose use throughout the facility to hang various items of apparel.
F2000		1	VV	Basket, Wastepaper, Round, Metal Round wastepaper basket, approximately 18" high x 16" diameter. This metal unit is used to collect and temporarily store small quantities of paper refuse in patient rooms, administrative areas and nursing stations.
		AR	CC	Receptacle, electrical, duplex, 120 volt (PG-18-1, MCS 26 27 26.
		AR	CC	Receptacle, electrical, quadruplex, 120 volt, for computer equipment items (PG-18-1, MCS 26 27 26).
		AR	CC	Telephone/Data combination outlet (PG-18-1, MCS 27 31 00).

Floor Plan


NSF (NSM) per Space Criteria M2 1 0 2'-8" 5'-4" 10'-8"Ft


Scale: 3/32" =1'-0"

NOTE: Guide plates are graphical representations of selected room types, i illustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Reflected Ceiling Plan

NSF (NSM) per Space Criteria

M2 1 0 2'-8" 5'-4" 10'-8"Ft

Scale: 3/32" =1'-0"

NOTE: Guide plates are graphical representations of selected room types, i illustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Design Standards

ARCHITECTURAL Ceiling: AT (SP) Ceiling Height: 9'-0" (2700 mm) Wall Finish: GWB (SC) Wainscot: -Base: RB Floor Finish: VCT Slab Depression: -Sound Protection: -Notes: --

SPECIAL EQUIPMENT

Wall Protection

LIGHTING

General: 20 FC – 0.5 W/SF (MIN) Special: As Shown Notes:

- Fixture A: 2'x4' (600 mm x 1200 mm) recessed, grid mounted fluorescent light fixture, UL listed for wet location, prismatic lens with gasketing, w/ F32T8 lamps 3500•K, CRI=70 (minimum).).
- 2) The foot-candle level is average maintained.
- Provide ballasts per fixture for desired switching configuration. To provide a uniform lighting level, switch inner lamp(s) on first switch and outer lamps on second switch.
- 4) Exact quantity, location, and lamping of light fixtures shall be chosen to meet the foot-candle requirement.

POWER

General: As Shown Emergency: Egress lighting Notes: --

COMMUNICATION/SPECIAL SYSTEMS	
Data:	
Telephone:	
Intercom:	
Nurse Call:	
Public Address:	
Radio/Entertainment:	
MATV:	
CCTV:	
MID:	
Security/Duress:	
VTEL:	
VA Satellite TV:	
Notes:	

HEATING, VENTILATING AND AIR CONDITIONING

Inside Design Conditions:

Dry-Bulb Temperature: 73F (23C)
Relative Humidity: 30% - 55%
Minimum Total Air Changes 4
per Hour:

Room Air Exhaust Required: Yes, 100% Special Exhaust or General General Exhaust

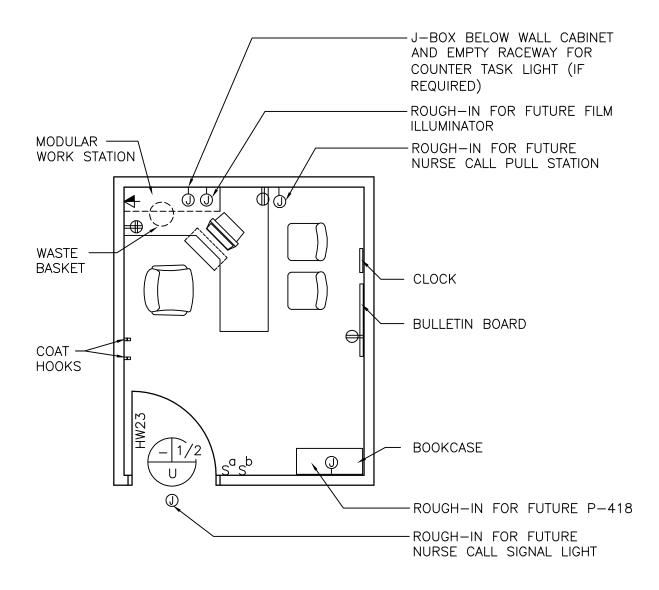
Exhaust:

Room Air Return Permitted: No Room Air Balance: Note 1) Notes:

 Positive (+) to Clean Receiving & Breakout Area

PLUMBING AND MEDICAL GASES

Cold Water:
Hot Water:
Laboratory Air:
Laboratory Vacuum:
Sanitary Drain:
Reagent Grade Water:
Medical Air:
Medical Vacuum:
Oxygen:
Notes:



Equipment List

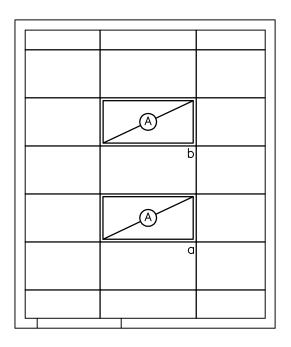
JSN	SYMBOL	QTY	Al	DESCRIPTION
		AR		Shelves, Freestanding, Open Wire, on Wheels Freestanding open wire shelves on wheels. Bottom shelf is to be solid and 8" from the floor.
A5145		1	CC	Hook, Garment, Double, Stainless Steel, Surface Mounted A surface mounted, satin finish stainless steel, double garment hook. Equipped with a concealed mounting bracket that is secured to a concealed wall plate. For general purpose use throughout the facility to hang various items of apparel.
F2000		1	VV	Basket, Wastepaper, Round, Metal Round wastepaper basket, approximately 18" high X 16" diameter. This metal unit is used to collect and temporarily store small quantities of paper refuse in patient rooms, administrative areas and nursing stations.
M2070		AR	VV	Shelving, Storage, 77x36x18 Storage shelving unit approximately 77" H X 36" W X 18" D. Corrosion resistant baked enamel, galvanized or stainless steel open unit with adjustable shelves. The closed version is also available. For use in the storage room.
		AR		Shelves, Freestanding, Open Wire, on Wheels Freestanding open wire shelves on wheels. Bottom shelf is to be solid.
		AR		Closed transport carts.
		AR	CC	Receptacle, electrical, duplex, 120 volt (PG-18-1, MCS 26 27 26).

Office (OFA01)(OFA02)(OFD01)(OFD03)(OFDC1)(SEC01) Floor Plan

CONSIDER PROVIDING BACKING AND ROUGH-INS FOR CONVERSION TO EXAM ROOM-SEE GUIDE PLATE 4-76 SIMILAR.

Typical: 120 NSF/ 11.2 NSM (Shown Above)

Minimum: 80 NSF/ 7.4 NSM Maximum: 150 NSF/ 13.9 NSM



NOTE: Guide plates are graphical representations of selected room types, i llustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Office (OFA01)(OFA02)(OFD01)(OFD03)(OFDC1)(SEC01)

Reflected Ceiling Plan

Typical: 120 NSF/ 11.2 NSM (Shown Above)

Minimum: 80 NSF/ 7.4 NSM Maximum: 150 NSF/ 13.9 NSM

NOTE: Guide plates are graphical representations of selected room types, i llustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Office (OFA01) (OFA02) (OFD01) (OFD03) (OFDC1) (SEC01)

Design Standards

ARCHITECTURAL Ceiling: AT Ceiling Height: 9'-0" (2700 mm) Wall Finish: **GWB-P** Wainscot: Base: RB Floor Finish: **CPT** Slab Depression: Sound Protection: **STC 40** Notes:

SPECIAL EQUIPMENT

LIGHTING

General: Special:

Notes:

- 2' x 4' (600 mm x 1200 mm) recessed fluorescent light fixture, parabolic louver, w/ F32T8 lamps 3500°K, CRI=70 (minimum).
- 2) The foot-candle level is average maintained.
- Provide ballasts per fixture for desired switching configuration.
 To provide a uniform lighting level, switch inner lamp(s) on first switch and outer lamps on second switch.
- Exact quantity, location, and lamping of light fixtures shall be chosen to meet the foot-candle requirement.
- 5) Fixture description for alternate 80 and 150 NSF rooms is the same as described in Note 1 above. Orient the two fixtures for 150 NSF room in the same manner as shown for 120 NSF room. Orient single fixture and grid for 80 NSF room at 90° from orientation shown in 150 NSF room. For 80 and 150 NSF rooms, increase fixture wattage by 50%.

POWER

General:

Emergency:

As Shown

Notes: 1) Coordinate location and height of

work station receptacles with

modular furniture.

COMMUNICATION/SPECIAL SYSTEMS

 Data:
 Yes

 Telephone:
 Yes

 Intercom:
 -

 Nurse Call:
 Rough-in only

 Public Address:
 -

 Radio/Entertainment:
 -

 MATV:
 -

 CCTV:
 -

 MID:
 -

 Security/Duress:
 -

 VTEL:
 -

 VA Satellite TV:
 -

Notes: 1) Coordinate location and height of work station telephone/data outlets with modular furniture.

HEATING, VENTILATING AND AIR CONDITIONING

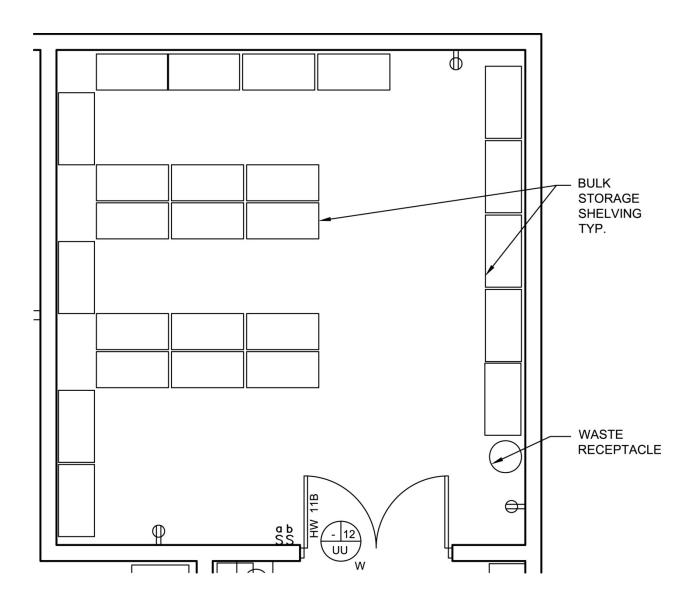
Inside Design Conditions: 70°F (21°C) to

75°F (24°C) Dry-Bulb Temperature 30 Percent to 50 Percent

Relative Humidity

Minimum Air Changes per Hour: 4 100% Exhaust: No 100% Outside Air: No Room Air Balance: Neutral (0) Dedicated Exhaust System: No Occupancy: 2 AC Load (Equipment): As Required AC Load-(Light): As Required Notes:

PLUMBING AND MEDICAL GASES


Office (OFA01) (OFA02) (OFD01) (OFD03) (OFDC1) (SEC01)

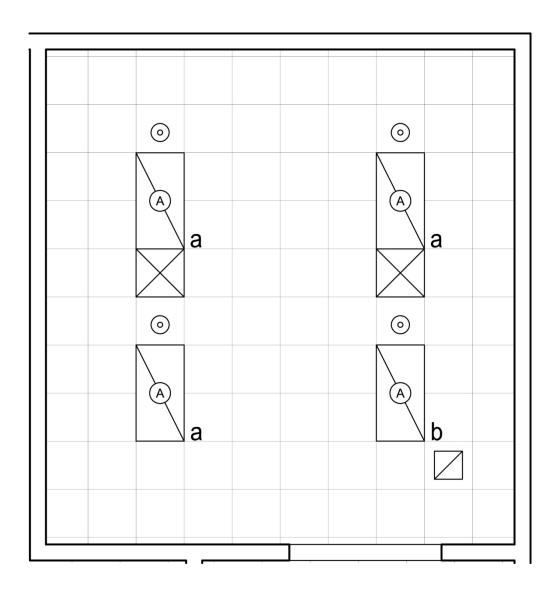
Equipment List

JSN	SYMBOL	QTY	Al	DESCRIPTION
	P-418	1	CC	Rough-in for lavatory, sensor control (PG-18-1, MCS 22 40 00; PG-18-4, NCS SD 22 40 00)
A1010		1	CC	Outlet, telephone/data, wall mounted (PG-18-1, MCS 27 15 00)
		1	CC	Receptacle, electrical, quadruplex, for computer equipment items (PG-18-1, MCS 26 27 26)
		AR	CC	Receptacle, electrical, duplex (PG-18-1, MCS 26 27 26)
		1	CC	Rough-in for nurse call, emergency station, and corridor signal light (PG-18-1, MCS 27 52 23)
E0210		1	VV	Modular work station with under counter keyboard tray, overhead storage, and wall hanger strips.
F0205		1	VV	Chair, rotary, with arms
F0120		1	VV	Bookcase, sectional, each section, 33" x 13" x 75" (825 mm x 325 mm x 1875 mm) with 10" (250 mm) base
A5145		2	VV	Hook, coat, wall mounted
F2000		1	VV	Receptacle, waste, 13" (325 mm) diameter
M1801		1	VV	PC, computer system, with keyboard
F0210		2	VV	Chair, straight, without arms
F3010		1	VV	Bulletin board, 48" x 36" (1200 mm x 900 mm)
F3200		1	VV	Clock, atomic, battery operated
			/=\/	
Refer to Exar	nination Room (RG3) for location of following:
		AR	CC	Provide backing for future wall mounted equipment and
				accessories:
				Sphygmomanometer Otoscope / Ophthalmoscope
				Glove dispenser
				Sharps container
				Paper towel dispenser
		1	CC	Rough-in j-box for future x-ray film illuminator

Bulk Storage Area (SRS01)

Floor Plan

NSF (NSM) per Space Criteria


M2 1 0 1 2 4Ft

Scale: 1/4" = 1'-0"

NOTE: Guide plates are graphical representations of selected room types, i illustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Bulk Storage Area (SRS01) Reflected Ceiling Plan

NSF (NSM) per Space Criteria

M2 1 2 4Ft Scale: 1/4" = 1'-0"

NOTE: Guide plates are graphical representations of selected room types, i illustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Bulk Storage Area (SRS01)

Design Standards

ARCHITECTURAL Ceiling: AT (SP) 9'-0" (2700 mm) Ceiling Height: GWB (SC) Wall Finish: Wainscot: Base: RB Floor Finish: VCT Slab Depression: Sound Protection: Notes:

SPECIAL EQUIPMENT

Wall Protection

LIGHTING

General: 20 FC - 1 W/SF (MIN) Special: As Shown Notes:

- Fixture A: 2'x4' (600 mm x 1200 mm) 1) recessed, grid mounted fluorescent light fixture, UL listed for wet location, prismatic lens with gasketing, w/ F32T8 lamps 3500•K, CRI=70 (minimum).
- 2) The foot-candle level is average maintained.
- 3) Provide ballasts per fixture for desired switching configuration. To provide a uniform lighting level, switch inner lamp(s) on first switch and outer lamps on second switch.
- Exact quantity, location, and lamping of 4) light fixtures shall be chosen to meet the foot-candle requirement.

POWER

General: As Shown Emergency: Egress lighting Notes:

COMMUNICATION/SPECIAL SYSTEMS	
Data:	
Telephone:	
Intercom:	
Nurse Call:	
Public Address:	
Radio/Entertainment:	
MATV:	
CCTV:	
MID:	
Security/Duress:	
VTEL:	
VA Satellite TV:	
Notes:	

HEATING, VENTILATING AND AIR CONDITIONING

Inside Design Conditions:

Dry-Bulb Temperature: 73F (23C) Relative Humidity: 30% - 55% Minimum Total Air Changes per Hour:

Room Air Exhaust Required:

Yes, 100% Special Exhaust or General General Exhaust Exhaust:

Room Air Return Permitted: No Room Air Balance: Neutral (0) Notes:

PLUMBING AND MEDICAL GASES

Cold Water: Hot Water: Laboratory Air: Laboratory Vacuum: Sanitary Drain: Reagent Grade Water: Medical Air: Medical Vacuum: Oxygen: Notes:

Bulk Storage Area (SRS01)

Equipment List

JSN	SYMBOL	QTY	Al	DESCRIPTION
F0530		1	VV	Cart, Trash Heavy duty trash cart, 42" high X 74" wide X 34" deep with two (2) solid non-marking rubber roller bearing wheels, two (2) swivel casters, 2000 pound capacity and tilt mechanism.
F2000		1	VV	Basket, Wastepaper, Round, Metal Round wastepaper basket, approximately 18" high X 16" diameter. This metal unit is used to collect and temporarily store small quantities of paper refuse in patient rooms, administrative areas and nursing stations.
M2055		1	VV	Shelving, Storage, Wire, with Adjustable Shelves Stationary, wire, shelving unit. Unit has fully adjustable shelves constructed of stainless steel. For use in general purpose storage areas. Shelving is provided in various sizes and configurations. Price provided is for a unit approximately 74"H x 18"D x 48"W with four shelves.
M2070		AR	VV	Shelving, Storage, 77x36x18 Storage shelving unit approximately 77" H X 36" W X 18" D. Corrosion resistant baked enamel, galvanized or stainless steel open unit with adjustable shelves. The closed version is also available. For use in the storage room.
		AR	00	Bulk shelving units.
		AR	CC	Receptacle, electrical, duplex, 120 volt (PG-18-1, MCS 26 27 26).

GEORGIAN™

Georgian Beveled Tegular with Prelude® 15/16" Exposed Tee grid (Pg. 215)

Key Selection Attributes

- · Unique spatter-painted visual
- Excellent sound absorption (items 795, 796, 1750)

High Washability

• Durable -Washable Impact-resistant Scratch-resistant Scrubbable

- Meets USDA/FSIS guidelines for use in food processing establishments
- 30-Year Limited System Warranty against visible sag (excludes item 791), mold/mildew, and bacterial growth

Typical Applications

- Schools/classrooms
- Healthcare assists in addressing HIPAA and FGI acoustical requirements (Items 795, 796 & 1750)
- Corridors/conference rooms
- Kitchen/food preparation (Items 793, 794, 828)
- Enclosed parking garages (Items 793, 794, 828)

$Detail \ \, \hbox{(Other Suspension Systems compatible. Refer to listing on page 170.)}$

Beveled Tegular

Georgian Beveled Tegular with Prelude 15/16" Exposed Tee grid

Beveled Tegular with Silhouette® 9/16"

Color

White (WH)

Square Lay-in & Tegular

medium texture

LEED® Credits **LEED** for Schools Waste Acoustics Low Emitting Energy Recycled Local Renewable Daylight Content Materials Mgmt Materials & Views or CHPS

Location Dependent

Recycled

Visual Selection Performance Selection Dots represent highest level of performance. (VL) UL Classified Acoustics Suspension Fire Liaht Sag Anti-Durable Recycle NRC CAC Rating Resist Microbial Edae Detail Dwg. Item Dimensions Program Reflect Profile Pas. 226-228 No. **(R) GEORGIAN** 9/16" 1753 2' x 2' x 5/8" 0.55 35 0.86 HumiGuard+ BioBlock+ 31-34 54 Wash Scrub Impact Scratch Yes Class A 1753M Beveled Tegular 600 x 600 x 15mm 15/16" 764 2' x 2' x 5/8" 0.55 33 0.86 Class A 764M 600 x 600 x 15mm Square Lay-in 763 2' x 4' x 5/8" 0.55 33 0.86 1 Class A 763M 600 x 1200 x 15mm 898 2' x 4' x 5/8" 0.55 1 35 0.86 Fire Guard 1 791 30" x 5' x 3/4" 0.55 33 Class A 0.86 Standard 791M 750 x 1500 x 19mm 15/16 1752 2' x 2' x 5/8" 0.55 0.86 12 35 Class A 1752M Beveled Tegular 600 x 600 x 15mm **GEORGIAN - High Acoustics** 15/161 796 2' x 2' x 3/4" 0.65 35 0.86 Class A 796M 600 x 600 x 19mm Square Lav-in 2' x 4' x 3/4" 795 0.65 35 Class A 0.86 795M • 600 x 1200 x 19mm 2' x 2' x 3/4" 15/161 1750 0.65 38 Class A 0.86 600 x 600 x 19mm Angled Tegular 1750M GEORGIAN - High Washability, Unperforated 15/16" 794 2' x 2' x 5/8" N/A 33 Class A 0.88 Square Lay-in 794M 600 x 600 x 15mm 793 2' x 4' x 5/8" N/A 33 Class A 0.88 793M 600 x 1200 x 15mm 828 2' x 4' x 5/8" N/A 35 Fire Guard 0.88 Suspension Systems 15/16" 9/16 h Prelude® Interlude® Silhouette® Sonata® Suprafine® Trimlok® Screw-Slot Bolt-Slot Item 1753-CAC 33 on 9/16" Interlude, Sonata, Suprafine

Physical Data

Material

Wet-formed mineral fiber

Surface Finish 793, 794, 828: factory-applied vinyl latex paint All other items: factory-applied latex paint

Fire Performance

ASTM E84 and CAN/ULC S102 surface burning characteristics. Flame Spread Index 25 or less. Smoke Developed Index 50 or less. (UL labeled) Fire Guard**: A fire resistive ceiling when used in applicable UL assemblies

ASTM E1264 Classification

Type III, Form 2, Pattern C E Items 794, 793, 828 – Type IX, Form 2, Pattern G Fire Class A

Sag Resistance

HumiGuard® Plus – superior resistance to sagging in high humidity conditions up to, but not including, standing water and outdoor applications.

VOC/Formaldehyde Emissions
(Excludes items 796, 795, 1750)
Meets CA Dept. of Health Services Standard Practice for the testing of VOC Emissions and is listed on CHPS High Performance Products Database for Low-Emitting Materials.

(Items 796, 795, 750)

Meets CA Dept. of Health Services Standard Practice for the testing of VOC Emissions depending on ceiling use and building parameters. Specific project data is required to evaluate performance.

Anti Mold/Mildew & Bacteria

BioBlock® Plus contains an anti-microbial treatment and provides guaranteed resistance against growth of

mold/mildew and Gram-positive and Gram-negative odor/stain-causing bacteria for 30 years.

Insulation Value R Factor - 1.6 (BTU units) R Factor - 0.28 (Watts units)

30-Year Performance Guarantee & Warranty Information See warranty details in the back of this catalog

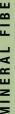
Weight; Square Feet/Carton

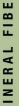
Weight; Square Feet/Carton 763, 793 - 0.67 lbs/SF; 96 SF/ctn 764, 794, 1752, 1753 - 0.72 lbs/SF; 64 SF/ctn 791 - 0.76 lbs/SF; 75 SF/ctn 828, 898 - 1.13 lbs/SF; 64 SF/ctn 796, 1750 - 1.31 lbs/SF; 48 SF/ctn 795 - 1.38 lbs/SF; 64 SF/ctn

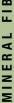
Recycled Content:

Location Dependent

fine texture







- Key Selection Attributes • Clean Rooms up to ISO Class 5 (Class 100) (items 1935 & 1937)
- · Exceeds FGI Guidelines for acoustics and cleanablility in general healthcare spaces
- · Meets USDA/FSIS guidelines for use in food processing areas
- Long-lasting water-repellency; Washable and Scrubbable
- Smooth, clean, durable finish Impact-, Scratch-, and Soil-resistant; safe for use
- with disinfectants Excellent sound absorption
- Visual complements Ultima and Optima®
- Now available with Ultima® Create!™ custom colors and images
 - Available with Ultima Themes™ images -Blooms, Bubbles, Dragonflies, and Stars
 - 30-Year Limited System Warranty against visible sag, mold/mildew, and bacterial growth

Typical Applications

Clean Rooms (items 1935 & 1937) Healthcare

- · Patient rooms
- · Treatment rooms
- Nurses stations
- · Emergency rooms
- · Semi-restricted surgical areas
- Corridors
- · Lavatories and restrooms
- Kitchen/food prep areas

Color

White (WH)

Performance Selection Dots represent highest level of performance.

Edge	Grid Drawings Cat. pgs. 226-228	ltem	Dimensions		Acous		Fire Rating	Light Reflect	Sag Resist	Anti- Microbial			Du	rable			Recycle Program
Profile	or armstrong.	No.	Dimensions		NRC	ONO	nating	•	A CONTRACTOR	®			~	⊕ ∕^\		<u></u>	
Health Zone U	JLTIMA†																
15/16" Square Lay-in	1, 2	1935*	2' x 2' x 3/4"		0.70	35	Class A	0.86	HumiGuard+	BioBlock+	Wash	Scrub	Water Repel	Impact	Scratch	Soil	Yes
					•			•	•	•	•	•	•	•	•	•	•
9/16"	31-33, 54	1936*	2' x 2' x 3/4"		0.70	35	Class A	0.86	•		•••	••••	•••••	•••••		•••••	
Beveled Tegular					•			•	•	•	•	•	•	•	•	•	•
15/16"	12, 2A	1937	2' x 2' x 3/4"		0.70	35	Class A	0.86	•			•••••	•••••	•••••		•••••	•••••••
Beveled Tegular					•			•	•	•	•	•	•	•	•	•	•
* Ultima® Create!™ cı	ustom images and color	available f	or this item (see Ult	ima Crea	ate! Brochu	ire CS-43	374 for detai	ils). armstror	ng.com/ceilings	(search: ultimac	reate)						••••••••
Suspension S	ystems																
15/16"			9	9/16"					<u>L</u>		ightharpoonup		_الر				
	relude ude Plus XL®	Clean Ro	oom™		Inte	rlude® X		Silhouet		Sonata®)	(L	S	Suprafine	8		rimlok® crew-Slot	

SS Prelude Plus XL Physical Data

Visual Selection

Wet-formed mineral fiber with DuraBrite® acoustically transparent water-repellent membrane

Health Zone Ultima Square Lay-in with Prelude® 15/16" Exposed Tee grid

Surface Finish

DuraBrite with factory-applied latex paint

Fire Performance

ASTM E1264 Classification

ASTM E84 and CAN/ULC S102 surface burning characteristics. Flame Spread Index 25 or less Smoke Developed Index 50 or less. (UL labeled)

Type IV, Form 2, Pattern E Fire Class A

Sag Resistance HumiGuard® Plus – superior resistance to sagging in high humidity conditions up to, but not including, standing water and outdoor applications.

VOC/Formaldehyde EmissionsMeets CA Dept. of Health Services Standard Practice

Application Considerations

Information

Insulation Value R Factor – 2.2 (BTU units) R Factor – 0.39 (Watts units)

Anti Mold/Mildew & Bacteria

odor/stain-causing bacteria for 30 years.

30-Year Performance Guarantee & Warranty

Application Considerations
For Clean Room installations use full-size panels. Testing
for Clean Room 5 (Class 100) was completed with fullsize Lay-in (1935) and 15/16" Beveled Tegular (1937)
with Clean Room 15/16" gasketed grid. For Clean Rooms

Details in back of catalog or at armstrong.com/warranty

for the testing of VOC Emissions and is listed on CHPS

High Performance Products Database for Low-Emitting

BioBlock® Plus contains an anti-microbial treatment and provides guaranteed resistance against growth of mold/mildew and Gram-positive and Gram-negative

that require field cut perimeter panels, use Lay-in panels (1935) or Tegular panels (1937) with Lay-in field cut panels at the perimeter.

Health Zone Ultima has an easy-to-clean, semi-gloss surface that is smoother in appearance than Ultima and Optima®. Health Zone Ultima will complement Ultima and Optima, but is not recommended for installation within the same room. Lighting conditions may emphasize the difference in gloss levels.

Cleaning Recommendations To clean panel, use a clean, white cloth with water or a mild detergent and wipe surface. To disinfect panel, lightly spray surface and wipe clean with a clean, white cloth. Acceptable colorless disinfectants include:

- Sodium hypochlorite Isopropyl alcohol
- Hydrogen peroxide Quaternary ammonium

Weight; Square Feet/Carton 1.08 lbs/SF; 48 SF/ctn

Square Lay-in, Tegular

smooth texture

Clean Room Ultima with Clean Room 15/16" grid (Pg. 210)

Clean Room FL with Clean Room 1-1/2" Exposed Tee grid (Pg. 210)

Key Selection Attributes

- Clean Rooms up to ISO Class 5 (Class 100)
- · Meets USDA/FSIS guidelines for use in food processing areas (excludes items 869, 871)
- Durable Washable, Scrubbable, Soil-resistant
- Non-directional visual reduces installation time and scrap
- · 30-Year Limited System Warranty against visible sag, mold/mildew, and bacterial growth

Clean Room Optima and Ultima **Additional Benefits**

- · Exceeds FGI Guidelines for acoustics and cleanability in general healthcare spaces
- · Long-lasting water-repellency

Typical Applications

Clean Room FL, Clean Room VL, Clean Room Ultima

Clean Rooms

Kitchens/food preparation areas

Laboratories Healthcare

- · Patient Rooms
- Treatment Rooms
- · Semi-restricted surgical areas
- · Emergency rooms

Clean Room Optima

Clean Rooms

Kitchens/food preparation areas

Laboratories

Healthcare

- · Patient rooms (walls-to-deck)
- · Treatment rooms (walls-to-deck)
- Emergency rooms (walls-to-deck)
- · Semi-restricted surgical areas (walls-to-deck)
- · MRI rooms

VL (Perforated)

Color

Lavatories/restrooms

Detail (Other Suspension Systems compatible. Refer to listing on pages 151-152.)

Clean Room FL

Clean Room VL

Clean Room Optima Square Lay-in

Clean Room Ultima

Clean Room FL with Clean Room 1-1/2" Exposed Tee grid

White (WH) (Clean Room Optima, Clean Room Ultima, Clean Room VL

(Clean Room

Clean Room™ OPTIMA® Clean Room ULTIMA®

Square Lay-in, Tegular

smooth texture

Recycled Content: Up to 80% armstrong.com/greengenie **LEED®** Credits **LEED** for Schools Energy Waste Recycled Local Renewable Daylight Acoustics Low Emitting Mgmt Content Materials Materials & Views or CHPS

Location Dependent

Visual Selection

Performance Selection Dots represent highest level of performance.

				Ų) UL Cla													
Edge	Suspension Detail Dwg.	Item	Dimensions			stics CAC	AC	Fire Rating	Light Reflect	Sag Resist	Anti- Microbia	I		l	Durabl	e		Recycle Program
Profile	Pgs. 226-228	No.			NRC		AC (=			*			7111111		6 ^\	/	$\overline{}$	43
Clean Room 0	PTIMA (see He	alth Zone	e™ Optima, Ite	ms 31	14, 3	115, 3	3214,	3215, Pgs	. 113-11	4)								
15/16" Square Lay-in	2	3114	2' x 2' x 1"		0.95	N/A	190	Class A	0.86	HumiGuard+	Inherent	Wash	Scrub	Water Repel	Impact	Scratch	Soil	Yes
							·····•				•							•
	12, 2	3115	2' x 4' x 1"		0.95 •	N/A	190	Class A	0.86	•	•	•	•	•	•	•	•	•
	12, 2	3314	2' x 2' x 1-1/2"		0.95	29	190 •	Class A	0.86 •	•	•	•	•	•	•	•	•	_
	12, 2	3315	2' x 4' x 1-1/2"		0.95	29	190	Class A	0.86									
					•		•		•	•	•	•	•	•	•	•	•	
15/16" Square Tegular	12, 2	3214	2' x 2' x 1"		0.95	N/A	190	Class A	0.86	•	•	•	•	•	•	•	•	•
	12, 2	3215	2' x 4' x 1"		0.95	N/A	190 •	Class A	0.86	•	•	•	•	•	•	•	•	•
	12, 2	3316	2' x 2' x 1-1/2"		0.95	29	190	Class A	0.86	•	•	•	•	•	•	•	•	_
	12, 2	3317	2' x 4' x 1-1/2"		0.95	29	190	Class A	0.86	•	•	•	•	•	•	•	•	_
Clean Room U	LTIMA (see He	alth Zone	e Ultima. Items	1935	and	1937.	. Pa. 1	73)										
15/16" Square Lay-in	2	1935	2' x 2' x 3/4"		0.70		N/A	Class A	0.86	HumiGuard+	Inherent	Wash	Scrub	Water Repell.		Scratch	Soil	Yes
									•	•	•	•	•	•	•	•	•	•
15/16" Beveled Tegular	12, 2A	1937	2' x 2' x 3/4"		0.70	35	N/A	Class A	0.86	•	•	•	•	•	•	•	•	•
Suspension Sy	ystems																	
15/16"	Prelude®			Clea	an Roor	n	<u></u>											
	Prelude Plus AL Prelude Plus XL																	

Physical Data

Material 3114, 3115, 3214, 3215 – Fiberglass with DuraBrite® acoustically transparent membrane 1935, 1937 – Wet formed mineral fiber with DuraBrite acoustically transparent water-repellent membrane

Surface Finish
DuraBrite with factory-applied latex paint

Fire Performance

ASTM E84 and CAN/ULC S102 surface burning characteristics. Flame Spread Index 25 or less. Smoke Developed Index 50 or less. (UL labeled)

ASTM E1264 Classification

3114, 3115, 3214, 3215, 3314, 3315, 3316, 3317 – Type XII, Form 2, Pattern E 1935, 1937 – Type IV, Form 2, Pattern E Fire Class A

Sag Resistance

HumiGuard® Plus - superior resistance to sagging in high humidity conditions up to, but not including, standing water and outdoor applications.

VOC/Formaldehyde Emissions Meets CA Dept. of Health Services Standard Practice for the testing of VOC Emissions and is listed on CHPS High Performance Products Database for Low-Emitting

Anti Mold/Mildew & Bacteria 3114, 3115, 3214, 3215, 3314, 3315, 3316, 3317 — Fiberglass substrate is inherently resistant to the growth of mold, mildew, and bacteria.

1935, 1937 - BioBlock® Plus contains an anti-microbial treatment and provides guaranteed resistance against growth of mold/mildew and Gram-positive and Gram-negative odor/stain-causing bacteria for 30 years.

Acoustical Details

with CAC backing are not UL Classified for acoustics. Contact TechLine for independant laboratory acoustic

Insulation Value
3114, 3115, 3214, 3215, 3314, 3315, 3316, 3317 —
R Factor — 4.0 (BTU units)
R Factor — 0.70 (Watts units)
1935, 1937 —
R Factor — 2.2 (BTU units)
R Factor — 0.39 (Watts units)

30-Year Performance Guarantee &

Warranty Information

See warranty details at armstrong.com/warranty

Application Considerations

Clean Room Optima (Health Zone Optima)
For Clean Room installations with Clean Room Optima, use full-size panels with Clean Room grid.

Clean Room Ultima (Health Zone Ultima)
For Clean Room installations with Clean Room Ultima, use
full-size panels (items 1935 and 1937) with Clean Room grid. Clean Room Ultima has been tested to withstand 500 wash and scrub cycles.

Cleaning Recommendations

To clean panel, use a clean, white cloth with water or a mild detergent and wipe surface. To disinfect panel, lightly spray surface and wipe clean with a clean, white cloth. Acceptable colorless disinfectants include:

- Sodium hypochlorite
- · Isopropyl alcohol
- Hydrogen peroxideQuaternary ammonium

Weight; Square Feet/Carton 3114, 3115, 3214, 3215 - 0.45 lbs/SF; 96 SF/ctn 1935, 1937 - 1.08 lbs/SF; 48 SF/ctn 3314, 3315, 3316, 3317 - 0.78 lbs/SF; 64 SF/ctn

Note: For assistance on proper Clean Room installation, contact TechLine at 1 877 ARMSTRONG. For Clean Room installations, use Clean Room Optima or Clean Room Ultima only with Armstrong Clean Room Grid Systems.

Recycled Content: Up to 70% armstrong.com/greengenie **LEED®** Credits **LEED** for Schools Energy Waste Recycled Acoustics Low Emitting Local Renewable Daylight Mgmt Content Materials Materials or CHPS

Location Dependent

Visual Selection

Clean Room™ FL/ Clean Room VL & VL

Square Lay-in, Tegular smooth texture

			Tu and the state of the state o	UL Clas	ssified									
Edge	Suspension Detail Dwg.	Item	Dimensions	Acou: NRC		Fire Rating	Light Reflect	Sag Resist	Anti- Microbial		Dur	able		Recycle Program
Profile Clean Room Fl	Pgs. 226-228 Field Unit –	No. Class 5 (Cla	ess 100)		CAC	め		*	®		·mmi	2 /	$\overline{\wedge}$	
15/16" or 1-1/2"	1,2	1715	2' x 2' x 3/4"	0.55	35	Class A	0.79	HumiGuard+	BioBlock+	Wash	Scrub	Water	Soil	
Square Lay-in	1,2	1715M	600 x 600 x 19mm	0.00	00	Oldoo 71	0.70	•	•	•	•	Repel	•	-
	1,2	1716 1716M	2' x 4' x 3/4"	0.55	35	Class A	0.79	•	•	•	•	•	•	-
Clean Room Fl	Border Unit	– Class 5 (C	Class 100)											
15/16" or 1-1/2" Square Lay-in	1,2	1720 1720M	2' x 2' x 5/8" 600 x 600 x 15mm	N/A	35	Class A	0.79	•	•	•	•	•	•	_
	1,2	1721 1721M	2' x 4' x 5/8"	N/A	35	Class A	0.79	•	•	•	•	•	•	_
Clean Room VI	L Unperforate	d – Class 5	(Class 100)											
15/16" or 1-1/2" Square Lay-in	1	868 868M	2' x 2' x 5/8" 600 x 600 x 15mm	N/A	40 •	Fire Guard	0.80	•	•	•	•	•	•	_
	1	870 870M	2' x 4' x 5/8"	N/A	40 •	Fire Guard	0.80	•	•	•	•	•	•	_
VL Perforated														
15/16" or 1-1/2" Square Lay-in	1	869 869M	2' x 2' x 5/8" 600 x 600 x 15mm	0.55	35	Fire Guard	0.78	•	•	•	•	•	•	_
	1	871 871M	2' x 4' x 5/8"	0.55	35	Fire Guard	0.78	•	•	•	•	•	•	_
Suspension Sy	rstems													
Prelude Fire G	e XL®	ean Room	1-1/2" Clean Room											

Performance Selection Dots represent highest level of performance.

Physical Data

Material

Wet-formed mineral fiber

Surface Finish

1715, 1716, 1720, 1721 – Soil-resistant polyester film 868, 870, 869, 871 – Vinyl-faced membrane

Fire Performance

ASTM E84 and CAN/ULC S102 surface burning characteristics. Flame Spread Index 25 or less. Smoke Developed Index 50 or less. (UL labeled) Fire Guard*: A fire resistive ceiling when used in applicable UL assemblies

ASTM E1264 Classification

ASIM E1264 Classification
1715, 1716, 1720, 1721 – Type IV, Form 2, Pattern G H
868, 870, – Type IV, Form 2, Pattern E
869, 871 – Type IV, Form 2, Pattern C E
Fire Class A

Sag Resistance HumiGuard® Plus – superior resistance to sagging in high humidity conditions up to, but not including, standing water and outdoor applications.

VOC/Formaldehyde Emissions Meets CA Dept. of Health Services Standard Practice for the testing of VOC Emissions and is listed on CHPS High Performance Products Database for Low-Emitting Materials.

Anti Mold/Mildew & Bacteria BioBlock® Plus contains an anti-microbial treatment and provides guaranteed resistance against growth of mold/ mildew and Gram-positive and Gram-negative odor/staincausing bacteria for 30 years.

Insulation Value R Factor – 1.5 (BTU units) R Factor – 0.26 (Watts units)

30-Year Performance Guarantee & Warranty Information

See warranty details at armstrong.com/warranty

Application Considerations

Clean Room FL

If acoustical absorption is required, specify a combination of field and border units – field units for use as full-size panels only; border units for use where panels must be cut on the job (borders, sprinkler head penetrations, etc.).

VL Perforated 869, 871 – VL Perforated is not intended for Clean Room and kitchen/food preparation applications. Use unperforated product – 868, 870.

Clean Room VL

Clean Room VL has been tested to withstand 10,000 scrub

Clean Room VL is not appropriate for applications where germicidal lamps are being used.

Weight; Square Feet/Carton 1715 – 1.02 lbs/SF; 48 SF/ctn 1716 – 1.02 lbs/SF; 64 SF/ctn 1720 – 1.04 lbs/SF; 48 SF/ctn 1721 – 1.17 lbs/SF; 64 SF/ctn 868, 869 – 1.10 lbs/SF; 48 SF/ctn 870, 871 – 1.11 lbs/SF; 64 SF/ctn

Note: For assistance on proper Clean Room installation, contact TechLine at 1 877 ARMSTRONG. For Clean Room installations, use Clean Room FL or Clean Room VL only with Armstrong Clean Room Grid Systems.

Clean Room[™] ClimaPlus[™]

CLEAN ROOM Class 10M-100M Panels with CLIMAPLUS Performance/ DONN DXLA Suspension System

See LEED report tool at **usgdesignstudio.com**

for detailed sustainability information.

Features and Benefits

- CLEAN ROOM™ CLIMAPLUS™ Class 100 and Class 10M-100M panels have an embossed, vinyl-laminated face with sealed back and edges for use in Class 100 or 10M-100M clean rooms.
- USDA Certified Biobased Product⁸.
- Firecode® product designed to meet life-safety codes.
- CLIMAPLUS 30-year lifetime system warranty against visible sag.

Applications

- Clean rooms
- Laboratories
- Surgical areas/ emergency rooms
- MRI rooms
- Kitchens/food prep areas (Class 100 only)

Substrate

- Water-felted mineral fiber

To order samples, go to usg.com

Clean Room[™] ClimaPlus[™]

To order samples/literature:
Web: usg.com
E-mail: samplit@usg.com
Fax: 888 874.2348
Technical Services:
800 USG.4YOU (800 874.4968)

Websites:
usg.com
usgdesignstudio.com
For the most up-to-date
technical information:
usgdesignstudio.com

•••••				(Մլ ՍL 0	Classified						
30	Edge ⁵	Panel Size	Class ²	Item No.	NRC ³	CAC Min.	LR⁴	Color	Grid Options	Recycled Content ¹	Panel Cost
Year System Warranty - No visible sag - Mold/mildew protection			0		•		0		•	(4)	6
CLEAN ROOM™ CLIMAPLUS™ Class 100 Panels	SQ	2'x2'x5/8" Unperforated	0	56099	_	35	.79	White	A, B, C, D, E	52% HRC	\$\$\$
Glass 100 Paneis		2'x4'x5/8" Unperforated	0	56091	_	35	.79	White	A, B, C, D, E	52% HRC	\$\$\$
CLEAN ROOM CLIMAPLUS Class 10M-100M Panels ⁷	SQ	2'x2'x5/8" Perforated	0	56060	.55	35	.79	White	A, B, C, D, E	52% HRC	\$\$\$
TOW-TOOM Pallets		2'x4'x5/8" Perforated	0	56090	.55	35	.79	White	A, B, C, D, E,	52% HRC	\$\$\$
	Legend							-			
	Low-emitting (CA Dept. of of VOC emiss low-emitting	missions (VOC) performance meets CA Specification Health Services Standard Practice for sions) and is listed on the CHPS data materials. USG Certificate of Compl ins also available on usg.com.	or the testing base for	Classifi recycle on prod	d content. Tota luct compositi nsumer (post-i	d Content ng greater than al recycled cont on of post-cont ndustrial) recy	tent is based sumer and	FIRECODE®			
	A DX®/DXL™	B C ZXLA™	D AX TM	E CE ⁻	^M 6						
Grid Profile Options											

Physical Data/ Footnotes

Product literature

Data sheet: SC1811

ASTM E1264 classification

Class 100: Type X, Pattern GI Class 10-100M: Type X, Pattern CGI

ASTM E84 surface burning characteristics

Class A Flame spread: 25 Smoke developed: 50

Weigh

1.1 lbs./sq. ft. (Class 100 panels) 1.2 lbs./sq. ft. (Class 10M-100M panels)

Thermal resistance

R-1.6

Maximum backloading

See USG 30-Year Limited Warranty Commercial Applications SC2102.

Maintenance

Can be cleaned easily with a damp sponge, mild detergent and water. Do not use acetate, ammonia, or highly concentrated chlorine, bromide or other harsh chemicals.

Notes

For details, see LEED report tool at usgdesignstudio.com.
 Fire-rated items: see UL design

Fire-rated items: see UL design details.

3. NRC rating for Clean Room ClimaPLis Class 100 panels is .10. USG does not consider a ceiling panel to be acoustically rated if NRC is less than .50. 4. LR values are shown as averages.
5. Field-cut edges of Clean Room panels may be sealed with white latex paint.
6. Clean-room-rated applications require a suspension system with gasketed tee flanges such as Down CE.
7. Not intended for kitchen/food prep applications. Use unperforated product (Class 100)—item numbers 56099 and 56091.
8. This product has achieved both BioPreferred initiatives: Federal

8. This product has achieved both BioPreferred initiatives: Federal Procurement Preference and Certified Product Labeling. See the complete listing of all USG ceiling panels on biopreferred.gov website.

APPENDIX C

HEATING, VENTILATING, and AIR CONDITIONING (HVAC)

June 19, 2012

MANAGEMENT OF ENVIRONMENTALLY CONTROLLED CLEAN/STERILE SUPPLY ROOMS

1. <u>PURPOSE</u>: To establish guidelines for clean/sterile storage supply rooms, including control of temperature, humidity, air exchange and purpose. Policies, procedures and responsibilities to ensure safe storage and assessment of clean/sterile medical supplies are further defined in this guidance.

2. INTRODUCTION:

- a. Clean/Sterile supplies are necessary for patient care. To ensure availability, supplies may be stored in bulk at a primary storage location, at point of use in secondary storage locations or at immediate use in examination room storage locations.
- b. Supplies stored over time must be maintained in a temperature and humidity controlled environment to ensure product integrity.
- c. Various professional organizations including Association of Operating Room Nurses (AORN), American Association of Medical Instruments (AAMI), Veteran's Health Administration (VHA) and American Institute of Architects (AIA) identify suggested environmental parameters for clean/sterile storage. In addition, the Under Secretary for Health for Clinical Operations provided guidelines for primary storage locations in a memorandum dated January 04, 2012, which replaces previous recommendations in the VA Handbook 7176 Supply Processing and Distribution.
- 3. **POLICY**: It is the policy of this medical center to provide clean/sterile medical supplies safe for patient use.
- a. Clean/Sterile supplies are acquired, reprocessed (if necessary), and placed into storage for use following existing standard operating procedures in the Logistics and Sterile Processing Service(SPS) policy manuals.
- b. Clean/Sterile supply stock is rotated on a "First In First Out" (FIFO) schedule. Product expiration dates are verified by Logistics and SPS Staff. Products exceeding the documented expiration date are removed from inventory following established procedures for reprocessing or return/disposal as outlined in the Logistics procedure manual.
- c. Primary storage areas will hold bulk supplies awaiting distribution to secondary storage areas or examination room storage areas. The primary storage area will meet recommended engineering controls for clean/sterile storage, to include temperature 72-

78 degrees Fahrenheit, humidity control of 20-60%, and appropriate air exchange (>10). The primary storage area will store supplies until distribution or expiration.

- d. Secondary storage areas (point of use) will hold supplies at par levels determined by Logistics and staff responsible for utilizing the supplies. The secondary storage area will meet recommended engineering controls for clean/sterile storage to include temperature 72-78 degrees Fahrenheit, humidity control 20-60%, and appropriate air exchange (>4) ("Interim Guidance"). The secondary storage area will store supplies until use, relocation to examination room storage or removal by Logistics staff based on par level, expiration and need.
- e. Examination room storage areas (immediate use) will hold supplies specific for use in that patient examination room not to exceed a one week supply of an item as determined via collaboration of Logistics and staff responsible for utilizing the supplies. Supplies will follow the FIFO system for supply utilization. Supplies exceeding one week in the examination room will be assessed for integrity and compromise by the staff utilizing the examination room. Any supply suspected of compromise will be returned to Logistics.
- f. Temperature and humidity will be monitored in primary and secondary storage areas using the TempTrak System. A combination of visual cues, alarms and electronic messaging will alert staff of a potential temperature or humidity concern. Staff will respond to TempTrak alerts appropriately as outlined in the Procedure section of this Medical Center Memorandum (MCM).
- g. Minor failures in environmental control of temperature, humidity or air flow do not require immediate relocation of materials unless there is valid concern for compromise, the humidity level exceeds 60% for greater than 12 hours, there is security or structural damage to the storage room, or it becomes evident that water or air contamination exists. Corrective action will begin immediately and will not exceed three days.
- h. A minor failure may convert to a major failure if it is determined corrective action could not be completed in 3 days, humidity exceeds 60% for greater than 12 hours, there is security or structural damage to the storage room or water or air contamination enters the room.
- i. A major failure in environmental control of security, structure, temperature, humidity or airflow requires immediate relocation of sterile supplies to an alternate storage location. Critical and semi-critical reusable medical equipment (RME) will be reprocessed by SPS. Invasive sterile devices will be returned to Logistics for disposition. Non-invasive sterile products will be returned to Logistics for possible redistribution to low risk areas.
- j. Newly constructed and renovated areas involving replacement of HVAC systems, which will meet recommended requirements, are to include temperature 72 +/- 1

degrees Fahrenheit, humidity control of 20-60%, and appropriate air exchange (>4) ("Interim Guidance").

- k. Invasive sterile products stored in an area where humidity has exceeded 60% for greater than 12 hours will be removed and disposition will follow existing Logistic policy for return or disposal. Non-invasive sterile products returned to Logistics will be assessed for possible compromise based on visible signs of condensation, package tears, discoloration or other evidence of contamination. Products deemed compromised will be disposed of by Logistics following existing procedures. Products deemed viable will be redistributed to low risk areas.
- I. An Infection Control Risk Assessment (ICRA) of primary and secondary storage areas in this medical center provides guidance on the potential risk of infection in the event engineering controls, temperature/humidity or proper air flow are compromised. Areas of highest risk include Logistics primary storage, Operating Room secondary storage including:
 - (1) Sterile Core rooms
 - (2) Primary Acute Care Unit rooms, and
- (3) Endoscopy Procedure rooms, ICU secondary storage, ED secondary storage and secondary storage on 1-2A,1-3A, Specialty Clinic and Dental. Staff will respond to TempTrak alerts appropriately as outlined in the procedure section of this MCM.

4. **DEFINITIONS:**

- a. <u>Clean/Sterile Supplies</u>: Any medical device or consumable designed for patient care that has been prepared by an authorized vendor or facility Sterile Processing Service (SPS) using aseptic or sterile technique. For the purpose of this MCM, "supplies" will refer to medical consumables and/or clean/sterile supplies.
- b. <u>Clean/Sterile Storage</u>: Areas purposed to store clean/sterile supplies until use or expiration. (Attachment A).
- c. <u>Primary Storage Area</u>: Areas purposed to hold bulk clean/sterile supplies awaiting distribution to Secondary Storage area (point of use) or Examination Storage Room (immediate use).
- d. <u>Secondary Storage Area</u>: Areas purposed at point of use to hold clean/sterile supplies for a service or group of services. Supplies in this area are maintained at par levels established by the service utilizing the supply storage room in collaboration with Logistics.
- e. <u>Examination Room Storage Area (Immediate Use/Just in Time Use)</u>: Areas purposed within a patient examination room to hold clean/sterile supplies for immediate

use, not to exceed a week's worth of supplies. Examination Room Storage Areas are not monitored for temperature and humidity.

- f. Par levels: The quantity of an item needed to meet the needs of a service over a defined time.
- g. <u>Temperature</u>: An environmental measurement of hotness or coldness. Primary and Secondary Clean/Sterile storage areas will be maintained in a temperature range of 72–78 degrees Fahrenheit in accordance with the Under Secretary of Health of Operations and Management Memorandum dated January 26, 2011. Temperature will not be monitored in Examination Room Storage areas.
- h. <u>Humidity</u>: an environmental measurement of the amount of water vapor in the air. Humidity in Primary and Secondary Clean/Sterile Storage will be maintained within a range of 20–60% humidity in accordance with the Under Secretary of Health of Operations and Management Memorandum dated January 26, 2011. Humidity will not be measured in examination room storage areas.
- i. <u>TempTrak</u>: An automated temperature and humidity monitoring system designed to record real time temperature and humidity measurements with audio and visual alert of readings outside defined parameters.
- j. <u>Infection Control Risk Assessment (ICRA) for Clean/Sterile Storage</u>: An assessment tool utilized by staff to evaluate the disposition of clean/sterile supplies when environmental storage conditions have been compromised. (Attachment B).
- k. <u>Minor Problem</u>: Can be resolved immediately or within three days. Does not compromise the security or structure of the storage room. Is not due to humidity in excess of 60% for greater than 12 hours. Is not due to water or air contamination entering the storage room.
- I. <u>Major Problem</u>: Cannot be resolved immediately and will exceed three days to correct. Compromises the security or structure of the room. Is due to humidity in excess of 60% for greater than 72 hours. Is due to temperature in excess of 78 degrees Fahrenheit greater than 72 hours. Is due to water or air contamination entering the storage room.
- m. Alternate Storage Location: A place where sterile supplies can be safely maintained and secured until consumables are returned to their original storage location. Options for alternate storage locations include return to Logistics primary storage, an uncompromised secondary storage location in close proximity or an area such as a hallway or unused exam room. A hallway or unused exam room should be used only for a short duration, not to exceed eight hours. Supplies must be covered when stored in the hallway.

5. PROCEDURES:

a. **General:** The Lebanon VA Medical Center provides clean/sterile storage for medical supplies.

b. Logistics:

- (1) has primary responsibility for the Clean/Sterile supply bulk storage maintained in the primary storage area and secondary storage areas. Supply inventory will be inspected upon receipt and placed into stock using FIFO supply rotation. Removal, reprocessing and destruction of supplies will follow existing Logistic policies and SPS procedures in all clean/sterile storage locations.
- (2) collaborates with staff utilizing secondary clean/sterile storage rooms to establish and maintain par supply levels for the appropriate services.
 - (3) replenishes and rotates par level supplies.
- (4) destroys/disposes of compromised supplies of using destruction procedures after a complete summary of all actions taken are accomplished in accordance with VA Handbook 7348 Utilization of Personal Property. RME items will be sent to the SPS for reprocessing.

c. Staff Utilizing Secondary Clean/Sterile Storage or Examination Room Storage:

- (1) ensures no "other" stored items are placed in the clean/sterile supply locations without first consulting Logistics. "Other" refers to any item not identified by Logistics as a clean/sterile medical supply item.
- (2) ensures no more than a one week supply is stored in the examination room for immediate use items. Clean/Sterile supplies will be physically separated from "dirty" supplies. Staff consults with Logistics or Infection Control Committee (ICC) to ensure examination room storage is appropriate.
 - (3) removes from use and return to Logistics any supplies stored in excess of 7 days.
- d. **The TempTrak system** monitors temperature and humidity in primary and secondary clean/sterile storage areas. A combination of visual cues and alarms will alert staff to possible temperature/humidity failures. Monitoring devices will be placed on the storage rack where supplies are stored. A visual read unit will be adjacent to the TempTrak monitoring device.
- (1) Engineering will ensure primary and secondary clean/sterile supply rooms are maintained at a temperature range of 72-78 degrees Fahrenheit, humidity of 20-60 percent and have adequate airflow. A quarterly report on the above parameters will be submitted to the ICC.

- (2) TempTrak sensors are attached to storage racks. In addition to sensors, visual digital thermometers are in each room to provide an immediate visual aid in response to a TempTrak alarm. In the event of a TempTrak alarm, immediate corrective action will begin as described below. (Attachment C).
 - (3) TempTrak Process:
 - (a) TempTrak System Alerts of Temperature or Humidity Failure
 - (b) Determine Tour of Duty
 - 1 Day Tour
 - <u>a</u> Alert is received by Logistics and Engineering
 - b Logistics/Engineering collaborate with unit staff to define problem
 - 2 Off Tour
 - <u>a</u> Alert is monitored by NOD/AOD and/or police
- <u>b</u> NOD/AOD and/or police collaborate with unit staff to define problem. If unit staff is not available police may inspect area for obvious compromise and correction (i.e. An open door)
 - c Collaborate with Logistics and Engineering to define problem
 - (c) Define Problem
 - 1 Minor Problem (see definition)
 - a Correct problem
 - **b** Document findings and resolution
 - 2 Major Problem (see definition)
- <u>a</u> Immediately relocate Clean/Sterile Supplies to Alternate Storage Location and Brief Leadership
- <u>b</u> If indicated activate the Emergency Operation Command (EOC) via the EverBridge System
- <u>c</u> Consult with Infection Prevention to Implement Product Infection Control Risk Assessment (ICRA)

- (1) ICRA low risk
- (a) Return supplies
- (b) Document incident
- (2) ICRA high risk
- (a) Replenish supplies
- (b) Follow Logistics SOP for return and destruction
- (c) Document incident

e. Infection Control Risk Assessment (ICRA):

- (1) If clean/sterile supplies are exposed to temperature or humidity beyond the parameters for storage defined in this MCM, the ICRA will be utilized in addition to manufactures guidelines to evaluate product disposition.
- (2) High Risk Locations include areas where Critical RME, Semi-Critical RME, Invasive Sterile Devices and/or Non-invasive sterile products for use on surgery or acute care patients are stored.
- (3) Low Risk Locations include areas where Non-Invasive Sterile Devices are stored for use on non acute patients and areas with minimal Critical RME, Semi-Critical RME and Invasive Sterile Devices.
- (4) When a Major Risk occurs staff will follow the ICRA to guide disposition of sterile supplies. (Attachment B)

f. Clean/Sterile Room Designation:

- (1) Designated Clean/Sterile Supply Rooms will be identified with appropriate signage on exterior doorways. Doorways will be kept locked at all times to ensure limited access to clean/sterile supply rooms.
- (2) In the event a new Clean/Sterile Supply Room is required, the storage area must meet approval from Engineering, Infection Control, Safety, and Logistics. (Attachment A).

6. RESPONSIBILITIES:

a. The <u>Medical Center Director</u>, or designee, is responsible to ensure resources are available for appropriate clean/sterile storage.

- b. The <u>Associate Director</u> is responsible for supporting Logistics and Engineering to comply with this memorandum.
- c. The <u>Associate Director of Patient Care Services</u> supports Nursing Staff and SPS comply with this memorandum.
- d. The <u>Chief of Staff</u> provides consultative guidance to ensure safe medical supplies are provided for patient use.

e. The Logistics Chief:

- (1) ensures staff compliance with this memorandum.
- (2) collaborates with engineering and nursing staff to continually assess clean/sterile storage rooms.
- (3) is responsible for procuring, storing, distributing and delivering medical supplies and following established procedures in the Logistics procedure manual.
- (4) coordinates product relocation to alternate storage area in the event of a storage room failure.
- (5) provides a quarterly report to the ICC to include environmental failures (temperature, humidity or air flow), timely responses of appropriate responsible persons to alarms, compromised products, near misses and corrective actions.

f. Engineering:

- (1) maintains temperature and humidity control for clean/sterile primary and secondary storage rooms
- (2) via Heating, Ventilation and Air Conditioning (HVAC) mechanics, sets acceptable parameters with input care/service line and in accordance with this MCM and will make appropriate system repairs when necessary.
- (3) provides a quarterly report on air flow for primary and secondary clean/sterile storage locations to the infection Control Committee. The report will include number of air exchanges flow failures and corrective action.
 - (4) coordinates with TempTrak users to reset alarms upon repair.
 - g. FITS (Facility Information Technology Services) maintains the operating integrity of the TempTrak alert system.

h. The Nurse Officer on Duty (NOD), Administrative Officer of the Day (AOD), Operator and Police:

- (1) responds to TempTrak alerts during non-administrative hours.
- (2) investigates probable cause of the alert following procedures outlined in this memorandum
- (3) activates the TempTrak Admin Group in the Everbridge System if indicated. The TempTrak Admin Group will include Engineering, Logistics, and others as indicated.
- i. <u>Service area staff</u> utilizing a Primary or Secondary Storage Room (not limited to Nursing):
- (1) ensures doors to clean/sterile storage areas are closed and purposed for clean/sterile supply storage only.
- (2) act as a first point of contact for visual inspection in the event of an environmental failure.
- (3) coordinate with assigned Inventory Manager for permission to store other than par level consumables.

7. REFERENCES:

"Interim Guidance for Ventilation Requirements in Sterile Processing Service"
Department of Veterans Affairs Memorandum from Deputy Under Secretary for Clinical
Operations

- 8. KEYWORDS: TempTrak, Clean/Sterile Supply
- 9. AUTHOR: Chief, Logistics Services
- 10. **RECSCISSION**: None
- 11. REISSUE DATE: April 2015

Robert W. Callahan, Jr. Director

DIFECTOR

Attachments: 3

MEDICAL CENER MEMORANDUM 134-002 June 19, 2012

Attachment A

		Engineering	Infection Control	Logistics	Safety
	CLEAN/STERILE SUPPLY ROOM CHECKLIST	Initials Date	Initials Date	Initials Date	Initials Date
~	Room w have ability to be locked, control traffic and limit access				
2	Room will have TempTrak installed				
3	Room will have a thermostat to control room temperature				
4	Storage racks will be movable with a solid bottom shelf				
5	Windows will be kept locked and blinds will be closed at all times				
ၑ	Visual aid thermometers will be attached to shelving units				
7	Corrugated boxes will be removed before supplies enter clean/sterile room				
ω	Positive air flow				
တ	Sign on exterior door will be posted as "Clean/Sterile Supply Room"				
10	Paperclips, staples, rubber bands, or tape are prohibited (except indicating tape)				
11	Storage will not block electrical access panels or sprinkler system				
12	Clean/Sterile Supply room will be kept clean and uncluttered				
13	No water supply in clean sterile supply rooms (except for fire suppression)				
4	Items will not be stored on floors				
13	Stored items are under the direction of Inventory Management, supplies obtained elsewhere should not be added without the approval of the Logistics Services Chief.				

MEDICAL CENER MEMORANDUM 134-002 June 19, 2012

Attachment B

INFECTION CONTRO	INFECTION CONTROL RISK ASSESSMENT - Clean/Sterile Storage	san/Sterile Storage		
				Used for Major Events Only
Clean/Sterile Storage Location	Probability of Risk/Impact Causing Severity	Current Storage Location	Risk/Impact Score = Probability + Risk +	Comments
	1am 4-	4 - None	Current System	
	3 – Moderate 3 – Moderate	3 – roor 2 – Good/Fair		
	2-Low 2-Minor 1-None/NA 1-None/NA	1 – Excellent/Solid		
Operating Room Storage				T. T
Sterile core rooms	4	င		High Risk, sterile,
				invasive items
PACU rooms	4	ო	7	High Risk, sterile,
Findoscopy	E C	8	O	Clean storage
(2/000000000000000000000000000000000000				जांद्रवा। जांचा बहुद
Acute Care Storage				
ICU	4 4		6	
ED	7	2	10	
1-2A and 1-3A	£	3	6	
CLC Storage				
1-4B and 1-5AB	2 2		5	
Inventory Management Storage				
Bld 1 Room 51	4	m	11	High Risk, sterile, invasive items
Primary Care Storage				
Bld 17 floors 2, 3 and 5	2	3	7	
Specialty Clinic Storage		90		
Bld 17 floors 3 and 4	E TOTAL E TOTAL E	3	6	
Dental Clinic Storage				
Bld 17 - 5	S S		7	

Minor Risk

Corrective Action Completed within 3 days
Humidity greater than 60% does not exceed 12 hours
Security and or structure of room intact
No water or air contamination in room

Immediate Relocation of supplies is not indicated *Minor Risk will convert to Major Risk if any component of this definition is breached. See grid below for Major Risk.

Major Risk - with a Risk Impact Score ≥ 9 Corrective Action cannot be completed within 3 days Humidity greater than 60% exceeds 12 hours Security and or structure of room are compromised Evidence of water or air contamination in room

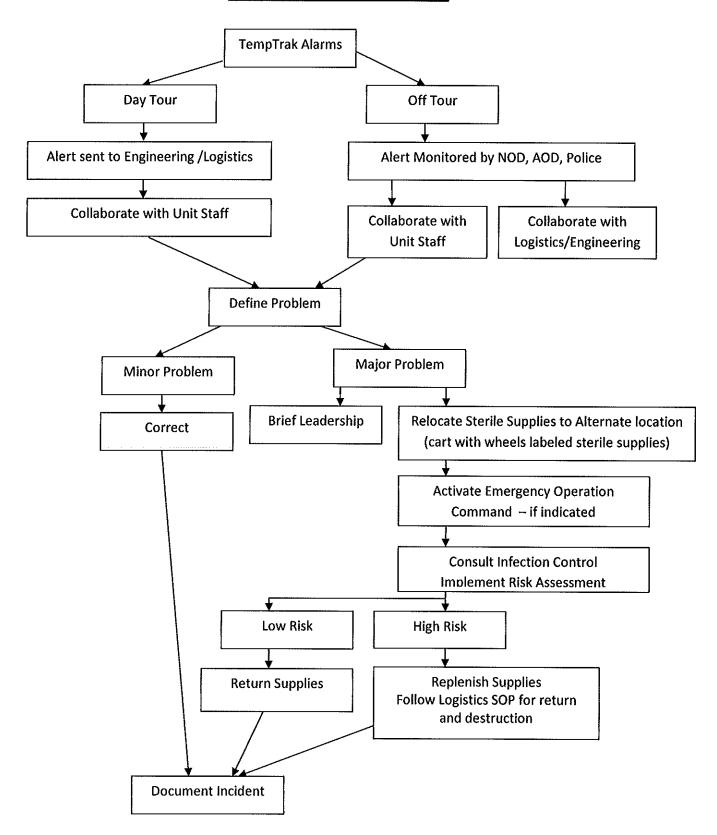
On the ICRA, if the Risk Impact Score for the affected area is greater than 9, the following apply:

- 1. Requires immediate corrective action
- Relocate clean/sterile supplies to alternate storage location
- 3. Reprocess all Critical Sterile and Semi Critical RME through SPS
 - 4. Return Invasive sterile products to Logistics for disposition
- 5. Return Non Invasive sterile products to Logistics for redistribution in low risk areas. If there is no visible sign of compromise. Visible signs of compromise include condensation, package tears, discoloration or other evidence of contamination.

Areas of High Risk Include: Inventory Management Sterile Storage, OR Sterile Core, PACU, Endoscopy, ICU, ED, 1-2A, 1-3A, Specialty Clinic and Dental

Major Risk - with a Risk Impact Score ≤9

Corrective Action cannot be completed within 3 days Humidity greater than 60% exceeds 12 hours Security and or structure of room are compromised Evidence of water or air contamination in room


On the ICRA, if the Risk Impact Score for the affected area is less than 9, the following apply:

- 1. Requires immediate corrective action
- 2. Relocate clean/sterile supplies to alternate storage location
- Return invasive sterile devices to Logistics for disposition
 Any Critical (sterile) or Semi Critical RME should be reprocessed
- 5. Non Invasive Sterile products can be used if there is no visible sign of compromise. Visible signs of compromise include condensation, package tears, discoloration or other evidence of contamination.

Areas of Low Risk Include: 1-4B, 1-5 and Primary Care

Attachment C

TEMPTRAK FLOW PROCESS

器

Horizontal Basic Series (continued)

HRP

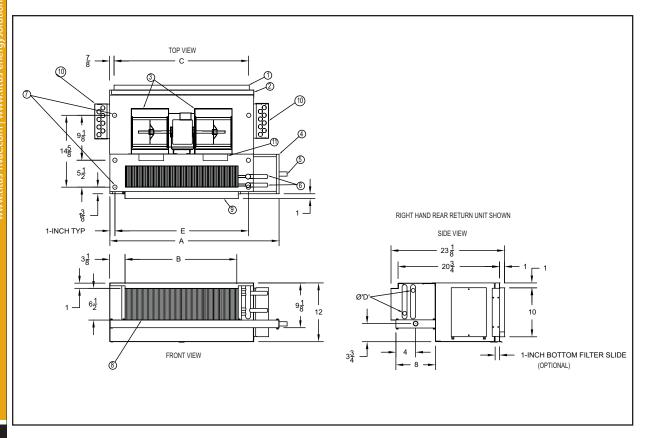
Factory assembled, horizontal blow-thru ducted HBP fan coils are designed for concealed installations above ceilings with ducted return and discharge air and are suitable for projects such as hotels, motels, condominiums and general commercial applications.

STANDARD FEATURES INCLUDE

- · Performance AHRI Certified to Standard 440.
- ETL-Listed. Constructed in compliance with ANSI/UL 1995 Standard.
- All casing sheet metal components fabricated of 18GA G90 galvanized steel.
- Return air plenum thermally and acoustically insulated covering the motor(s)/blower(s) assembly to reduce noise dissipation from the unit.
- High-efficiency 2-row coil suitable for a 2-pipe system.
- · Coil manual air vent.
- · 1-Inch thick disposable filter.
- Multi-speed motor of the permanent split capacitor (PSC) type.
- Double Width Double Inlet (DWDI) direct driven blowers of the whisper quite type.
- Controls installed in a single control box suitable for single power supply.
- Single wall condensate pan in galvanized steel, thermally protected on the outside. (Consult Titus for availability).
- 1-Inch discharge air flange.
- 1-Inch return air flange
- Anti-vibration mounts for field installation.

OPTIONAL FEATURES INCLUDE

- 3-, 4- And 5-row coils for 2-pipe systems.
- Single block 2, 3 and 4 rows CW with 1 row re-heat or pre-heat coils for 4-pipe system applications (5 rows max).
- Single block 2 and 3 rows CW with 2 rows re-heat or pre-heat for 4-pipe system applications (5 rows max).
- · Automatic coil air vents.
- LH or RH entry pipe connections.
- Filter option include:
 - 1-inch high-efficiency pleated filters.
 - ♦ 1-inch washable filters.


- Bottom or rear return air and filter location.
- Filter supports with slides or clips.
- Filter removal from LH/RH, bottom and rear.
- Cabinet liner in 1/2-inch foil face.
- Motor voltage suitable for 208V, 230V or 277V/1Ph/60Hz power supplies.
- Motor in-line quick disconnect (Not available on bottom return filter).
- · Thermostat and Accessories (Refer to Accessories on page V86 for details).
- Single power supply disconnect switch and fuses.
- Automatic 2-pipe changeover switch for heating and cooling applications.
- · Electric heaters.
- HW standby electric heater auto changeover switch.
- Valve Packages (Refer to Accessories on page V86 for details).
- · Condensate pan options:
 - ♦ Single wall condensate pan manufactured in 20GA 304 Stainless Steel.
 - ♦ Double wall construction consisting of outer and inner skins.
 - ♦ Condensate pan overflow safety switch.
 - ♦ Condensate pan safety overflow connection.

DIMENSIONS

HBP CONCEALED CEILING WITH PLENUM

- 1. Return Air Flange
- 2. Filter Rear Return
- 3. Motor/Blower(s) Assemby
- 4. Condensate Tray (Double Wall optional)
- 5. Condensate Copper Connection ³/₄" MNPT
- 6. Coil Connections (2-Pipe Shown)
- 7. Hanging Points
- 8. Coil

- 9. Supply Air Flange
- 10. Electric Control Panel Note: Control box may mounted on either side.
- 11. Electric Heaters (optional)

Model		Dimensions (inches)					
iviodei	-	_					Weight
	Α	В	С	D	E	Filter	(pounds)
HBP02	251/2	141⁄4	181⁄4	5/8	181⁄4	20x12x1	63
HBP03	281/2	171/4	211/4	5/8	211/4	23x12x1	70
HBP04	341/2	231/4	271/4	5/8	271/4	29x12x1	80
HBP06	431/2	321/4	361/4	5/8	361/4	38x12x1	99
HBP08	51½	401/4	441/4	5/8	441/4	46x12x1	106
HBP10	611/2	501/4	541⁄4	7/8	541⁄4	56x12x1	136
HBP12	71½	601/4	641/4	7/8	641/4	66x12x1	150

PERFORMANCE DATA

HBP CONCEALED CEILING WITH PLENUM

	2-PIPE SYSTEM							
	2	Rows Coo	oling (1)	2 Rows Heating (1)			
Model	Total	Sensible	Flow	PD	Sensible	Flow	PD	
	MBH	MBH	gpm	ft wg	MBH	gpm	ft wg	
HBP02	4.1	3.3	0.8	0.34	13.2	0.9	0.32	
HBP03	5.9	4.8	1.2	0.77	18.6	1.3	0.69	
HBP04	8.7	7.0	1.7	1.84	26.9	1.8	1.56	
HBP06	11.6	9.7	2.3	0.92	37.6	2.6	0.97	
HBP08	15.0	11.9	3.0	1.66	45.9	3.1	1.58	
HBP10	21.2	16.7	4.2	3.66	62.9	4.3	3.24	
HBP12	24.1	19.4	4.8	2.50	74.3	5.1	2.54	

	2-PIPE SYSTEM							
		3 Rows C	ooling		3 Rows Heating			
Model	Total	Sensible	Flow	PD	Sensible	Flow	PD	
	MBH	MBH	gpm	ft wg	MBH	gpm	ft wg	
HBP02	5.8	4.2	1.2	1.00	17.0	1.2	0.78	
HBP03	8.4	6.1	1.7	2.25	24.2	1.6	1.70	
HBP04	12.5	9.1	2.5	5.39	35.2	2.4	3.92	
HBP06	16.8	12.6	3.4	2.44	49.5	3.4	2.12	
HBP08	21.1	15.3	4.2	4.26	59.7	4.1	3.41	
HBP10	27.5	20.6	5.5	3.67	80.7	5.5	3.36	
HBP12	34.0	25.0	6.8	6.02	97.1	6.6	5.20	

	2-PIPE SYSTEM							
		4 Rows C	ooling		4 Rows Heating			
Model	Total	Sensible	Flow	PD	Sensible	Flow	PD	
	MBH	MBH	gpm	ft wg	MBH	gpm	ft wg	
HBP02	6.9	4.8	1.4	1.88	18.7	1.3	1.26	
HBP03	10.0	6.9	2.0	4.21	26.9	1.8	2.78	
HBP04	13.1	9.6	2.6	1.52	38.5	2.6	1.31	
HBP06	20.4	14.3	4.1	4.36	55.5	3.8	3.25	
HBP08	23.5	16.6	4.7	2.88	65.5	4.5	2.40	
HBP10	33.3	23.4	6.6	6.24	90.7	6.2	4.94	
HBP12	39.0	27.6	7.8	5.82	100.8	7.4	4.96	

	2-PIPE SYSTEM							
		5 Rows C	ooling		5 Rows Heating			
Model	Total	Sensible	Flow	PD	Sensible	Flow	PD	
	MBH	MBH	gpm	ft wg	MBH	gpm	ft wg	
HBP02	7.6	5.0	1.5	2.77	19.2	1.3	1.65	
HBP03	9.8	6.8	2.0	0.93	27.1	1.9	0.72	
HBP04	14.7	10.2	2.9	2.23	40.4	2.8	1.68	
HBP06	22.4	15.0	4.5	6.20	57.7	3.9	4.13	
HBP08	26.0	17.5	5.2	4.00	68.0	4.6	2.93	
HBP10	35.2	24.0	7.0	4.91	93.7	6.4	3.93	
HBP12	43.2	29.2	8.6	7.86	112.4	7.7	5.99	

- 1. Standard basic unit.
- 2. All ratings are based at sea level altitude, nominal air volumes at 0 external static pressure and with water as the cooling fluid.

	4-PIPE SYSTEM							
		2 Rows C	ooling		1 Row Heating			
Model	Total	Sensible	Flow	PD	Sensible	Flow	PD	
	MBH	MBH	gpm	ft wg	MBH	gpm	ft wg	
HBP02	3.9	3.2	0.8	0.31	7.5	0.5	0.40	
HBP03	5.7	4.6	1.1	0.72	10.4	0.7	0.84	
HBP04	8.4	6.7	1.7	1.72	14.9	1.0	1.89	
HBP06	11.2	9.3	2.2	0.85	22.0	1.5	5.24	
HBP08	14.3	11.3	2.9	1.52	25.8	1.8	1.22	
HBP10	20.4	15.9	4.1	3.39	35.0	2.4	2.60	
HBP12	23.0	18.4	4.6	2.28	42.3	2.9	4.22	

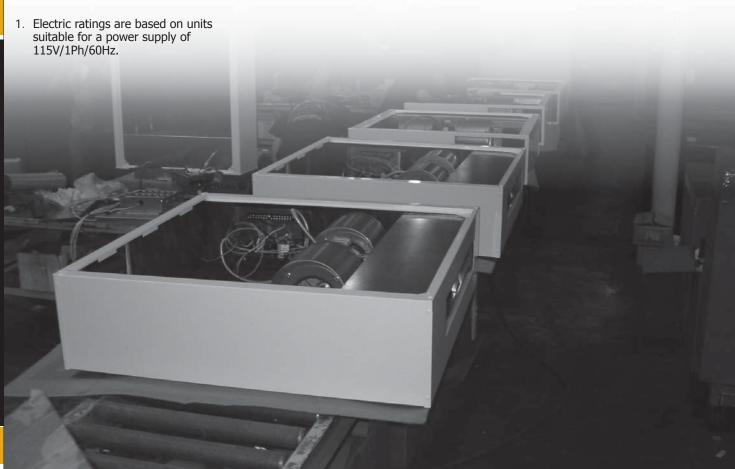
	4-PIPE SYSTEM							
		3 Rows C	ooling		1 Row	/ Heatir	ng	
Model	Total	Sensible	Flow	PD	Sensible	Flow	PD	
	MBH	MBH	gpm	ft wg	MBH	gpm	ft wg	
HBP02	5.5	4.0	1.1	0.93	7.2	0.5	0.38	
HBP03	8.0	5.8	1.6	2.07	10.0	0.7	0.80	
HBP04	11.9	8.7	2.4	4.92	14.4	1.0	1.80	
HBP06	16.0	11.9	3.2	2.22	21.1	1.4	4.94	
HBP08	20.2	14.5	4.0	3.91	24.8	1.7	1.27	
HBP10	26.2	19.5	5.2	3.34	33.7	2.3	2.60	
HBP12	32.6	23.8	6.5	5.53	40.6	2.8	4.28	

	4-PIPE SYSTEM							
		4 Rows C	ooling		1 Row Heating			
Model	Total	Sensible	Flow	PD	Sensible	Flow	PD	
	MBH	MBH	gpm	ft wg	MBH	gpm	ft wg	
HBP02	6.6	4.5	1.3	1.70	6.9	0.5	0.36	
HBP03	9.5	6.5	1.9	3.81	9.6	0.7	0.76	
HBP04	12.3	9.0	2.5	1.35	13.7	0.9	1.68	
HBP06	19.2	13.4	3.8	3.91	20.2	1.4	4.63	
HBP08	22.2	15.6	4.4	2.58	23.7	1.6	1.25	
HBP10	31.6	22.0	6.3	5.64	32.2	2.2	2.63	
HBP12	37.0	26.0	7.4	5.23	38.9	2.7	4.19	

- Cooling capacities are based on 80°F DB/67°F WB entering air, 45°F entering water, 10°F water temperature rise and high fan speed.
- Heating capacities are based on 70°F DB entering air temperature, 180°F entering hot water, 30°F water temperature drop and high fan speed.

PERFORMANCE DATA

Nominal Air Volumes

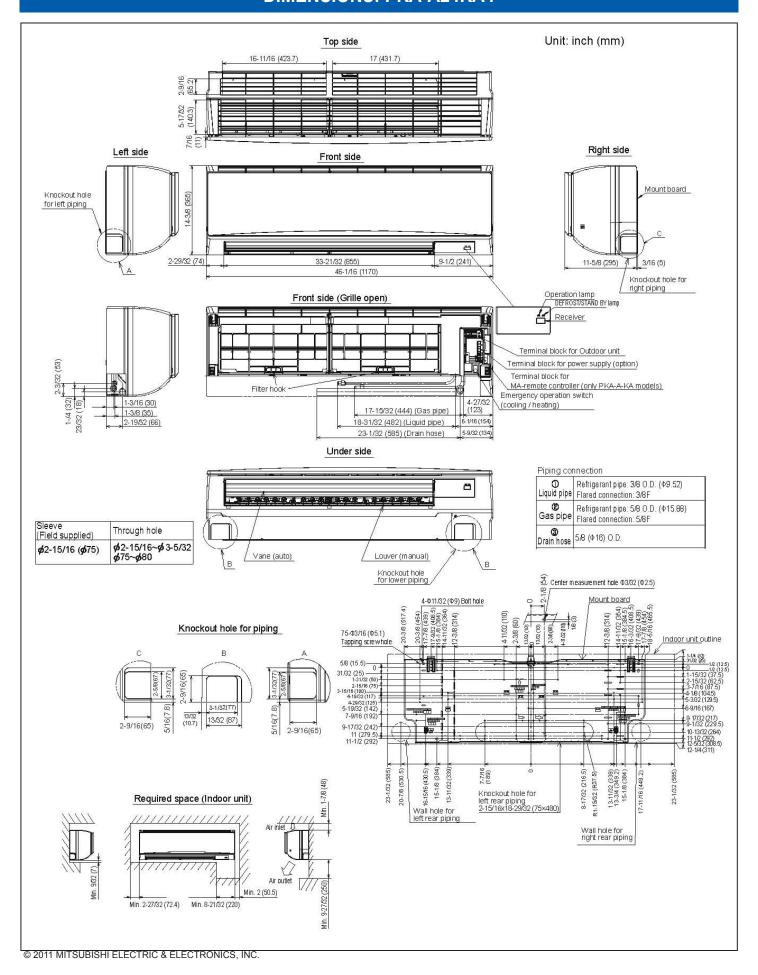

w.titus-hvac.com | www.titus-energysolutions.com

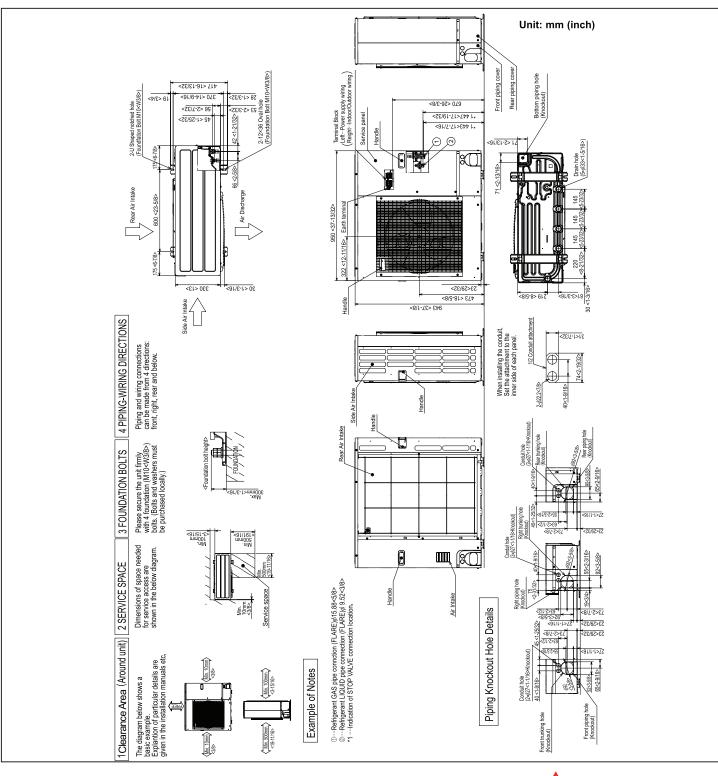
cfm (1) Model High Med Low HBP02 219 187 171 326 230 HBP03 289 HBP04 503 391 310 HBP06 439 696 567 HBP08 535 813 647 HBP10 1150 867 696 HBP12 1370 931 781

Air Volume (cfm) Vs External Static Pressure in wg (2)							
0.05	0.10	0.15	0.20	0.25	0.30		
198	182	166	-	-	-		
289	262	219	150	-	-		
478	441	399	341	245	-		
651	613	569	504	401	-		
777	722	681	658	628	536		
1075	1012	939	848	737	616		
1297	1236	1171	1095	1015	947		
	0.05 198 289 478 651 777 1075	0.05 0.10 198 182 289 262 478 441 651 613 777 722 1075 1012	0.05 0.10 0.15 198 182 166 289 262 219 478 441 399 651 613 569 777 722 681 1075 1012 939	0.05 0.10 0.15 0.20 198 182 166 - 289 262 219 150 478 441 399 341 651 613 569 504 777 722 681 658 1075 1012 939 848	0.05 0.10 0.15 0.20 0.25 198 182 166 - - 289 262 219 150 - 478 441 399 341 245 651 613 569 504 401 777 722 681 658 628 1075 1012 939 848 737		

- 1. Nominal air volume ratings are based on a 2-row coil at sea level altitude with 0 external static pressure.
- 2. Air volumes at alternative external static pressures are based at high fan speed.

	Mo	Motor				
Model	HP	Total				
	пг	AMPS				
HBP02	1/20	0.8				
HBP03	1/20	0.8				
HBP04	1/20	0.8				
HBP06	1/10	1.5				
HBP08	1/10	1.5				
HBP10	1/10	1.5				
HBP12	1/10	1.5				


SUBMITTAL DATA: PKA-A24KA4 & PUY-A24NI	HA4 24,000 BTU/H WALL	-MOUNTED AIR-CONDITIONING SYST
Job Name:	Location:	Date:
Purchaser:	Engineer:	
Submitted to:	For □Reference □A	pproval Construction
System Designation:	Schedule No.:	
GENERAL FEATURES • Wall-mounted indoor unit for residential and commercial applications • Shiny-white—exterior plastic; compact design • Quiet operation—both indoor and outdoor units • Self-check function—integrated diagnostics • Limited warranty: five years on parts and defects and seven years on compressors OPTIONAL ACCESSORIES Indoor Unit Mini Condensate Pump (SI3100-230, 230V) L-Connector Pipe (PAC-SC84PI; for left side unit piping installation) Outdoor Unit Drain Pan (PAC-SG63DP)	Indoor Unit: PKA-A24KA4	
 □ Drain Socket (PAC-SG61DS) □ Three-pole Disconnect Switch (TAZ-MS303) □ Wind Baffle (WB-PA2) □ Air Outlet Guide (PAC-SG59SG) □ Mounting Base (DSD-400N) □ Mounting Pad (ULTRILITE2) □ Wall-mounting Brackets (CWMB1) Controller Options □ Wireless Remote Controller Kit (MHK1) with Remote Controller (MRCH1), Wireless Receiver (MIFH1), and cable (MRC1)* □ Setback down to 50°F when used with MRCH1 Remote Controller 	Fan Motor Fan Motor Output Airflow (Lo - Mid - Hi) Air Filter Sound Pressure Level (Lo - Mid - Hi). SHF	Outdoor Unit: PUY-A24NHA4
 Portable Controller (MCCH1; for use with Wireless Remote Controller Kit MHK1)* 	DIMENSIONS	UNIT INCHES / MM
 Outdoor Air Sensor (MOS1; for use with Remote Controller (MRCH1), Wireless Remote Controller Kit (MHK1) and Portable Controller 	W D	46-1/16 / 1,170 11-5/8 / 295
(MCCH1)* *See Submittal for information on each option.	H	14-3/8 / 365
"See Submittal for information on each option. □ Wall-mounted Wired Remote Controller (PAR-21MAA) □ M-NET Adapter (PAC-SF81MA) □ CN51 Connector for Multiple Remote Controller Adapters/Duct Fan Controller (PAC-725AD) □ CN32 Connector for Remote On/Off (PAC-715AD)	Weight	
Remote Temperature Sensor (PAC-SE41TS) Remote Operation Adapter - Display and On/Off (PAC-SF40RM) Hand-held Wireless Remote Controller (PAR-FL32MA) Lockdown Bracket for Hand-held Controller (RCMKP1CB) Control/Service Tool (PAC-SK52ST)	MCA	DC Inverter-driven Twin Rotary
Rated Capacity		INCHES / MM
Minimum Capacity		37-3/8 / 950 13 + 1-3/16 / 330 + 30
EER		37-1/8 / 943
Total Input	Weight External Finish	
Electrical Requirements Power Supply	Refrigerant Pipe Size O.D.	E/0" / 4E 00
Recommended Fuse/Breaker Size	Liquid Side	
Voltage	Max. Refrigerant Pipe Length	
Indoor - Outdoor S1-S2 AC 208 / 230V Indoor - Outdoor S2-S3 DC 24V	Max. Refrigerant Pipe Height Diff	erence

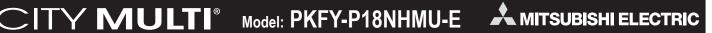

 ** With optional wind baffle accessory installed. If not installed, the minimum temperature will be 23°F (-5°C) DB.

OPERATING CONDITIONS

DIMENSIONS: PKA-A24KA4

DIMENSIONS: PUY-A24NHA4

COOLING & HEATING


- Live Better

3400 Lawrenceville Suwanee Rd Suwanee, GA 30024

Tele: 678-376-2900 • Fax: 800-889-9904 Toll Free: 800-433-4822 (#3)

www.mehvac.com

Specifications are subject to change without notice.

Job Name:	Location:
Drawing Reference:	Schedule No.
System No.:	Date:

GENERAL FEATURES

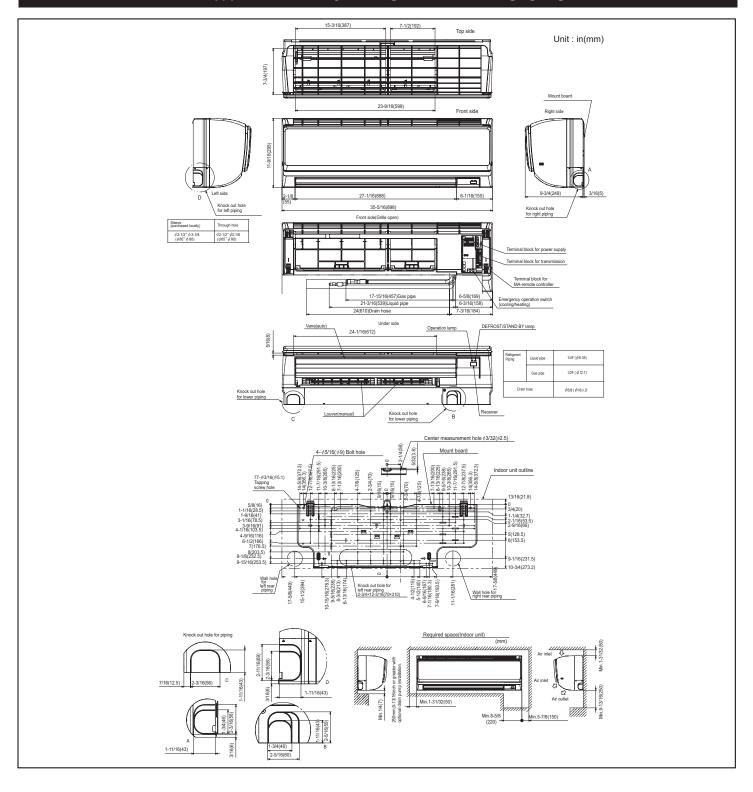
- R410A refrigerant
- Seven sizes from 6,000 to 30,000 Btu/h
- Powerful airflow (CFM)
- Compact, lightweight, shiny-white, flat-panel design
- Quiet operation
- Multiple fan-speed settings
- Intake grille filter is easily removed for cleaning
- Built-in receiver is standard

SPECIFICATIONS

Capacity* 18,000 Btu/h Cooling
Power
Power Source
Power Consumption
Cooling0.03 kW
Heating0.03 kW
Current
Cooling0.30 A
Heating0.30 A
Minimum Circuit Ampacity (MCA)0.38 A
Maximum Overcurrent Protection (MOCP) Fuse15 A
maximum evereum retestion (me er) rade
External FinishMunsell No. 1.0Y 9.2 / 0.2
External Dimensions
Inches11-5/8 H x 35-3/8 W x 9-13/16 D
mm
11111293 11 X 090 VV X 249 D

Net Weight Unit29 lbs. / 13 kg
Coil TypeCross Fin (Aluminum Plate Fin and Copper Tube)
Fan Type x QuantityLine Flow Fan x 1 Airflow Rate (Low-Mid-High)320 - 370 - 425 CFM Motor TypeDirect-drive DC Motor Output
Air FilterPolypropylene Honeycomb
Refrigerant Piping Dimensions Liquid (High Pressure)
Drainpipe DimensionI.D. 5/8"/16 mm
Sound Pressure Levels Low-Mid-High36 - 41 - 45 dB(A)
OPTIONS □ Condensate Pump

- * Cooling / Heating capacity indicated at the maximum value at operation under the following conditions:
- Cooling: Indoor 80°F (27°C) DB / 67°F (19°C) WB, Outdoor 95°F (35°C) DB


Heating: Indoor 70°F (21°C) DB, Outdoor 47°F (8°C) DB / 43°F (6°C) WB

□ CN24 Relay Kit......CN24RELAY-KIT-CM

Note: Ventilation air: Providing sufficient ventilation air is an important part of every building design. ASHRAE Standard 62 provides the minimum ventilation air requirement. Also, check local codes.

Model: PKFY-P18NHMU-E - DIMENSIONS

Certificate Number FM33568

Mitsubishi Electric Air Conditioning & Refrigeration Systems Works acquired ISO 9001 certification under Series 9000 of the International Standard Organization (ISO) based on a review of quality warranties for the production of refrigeration and air conditioning equipment.

ISO Authorization System The ISO 9000 series is a plant authorization system relating to quality warranties as stipulated by the ISO. ISO 9001 certifies quality warranties based on the "design, development, production, installation and auxiliary services" for products built at an authorized plant.

Mitsubishi Electric Air Conditioning & Refrigeration Systems Works acquired environmental management system standard ISO 14001 certification.

The ISO 14000 series is a set of standards applying to environmental protection set by the International Standard Organization (ISO).

Certificate Number EC97J1227

HVAC Advanced Products Division

Mitsubishi Electric & Electronics USA, Inc. 3400 Lawrenceville Suwanee Rd.

Suwanee, GA 30024

Tele: 678-376-2900 • Fax: 800-889-9904

Toll Free: 800-433-4822 (#4)

www.mehvac.com

Specifications are subject to change without notice.

Model:	PH	M)	LP3	6N	Ш	МΠ
MUUUDI.		11/1		7 O I F.		.,,

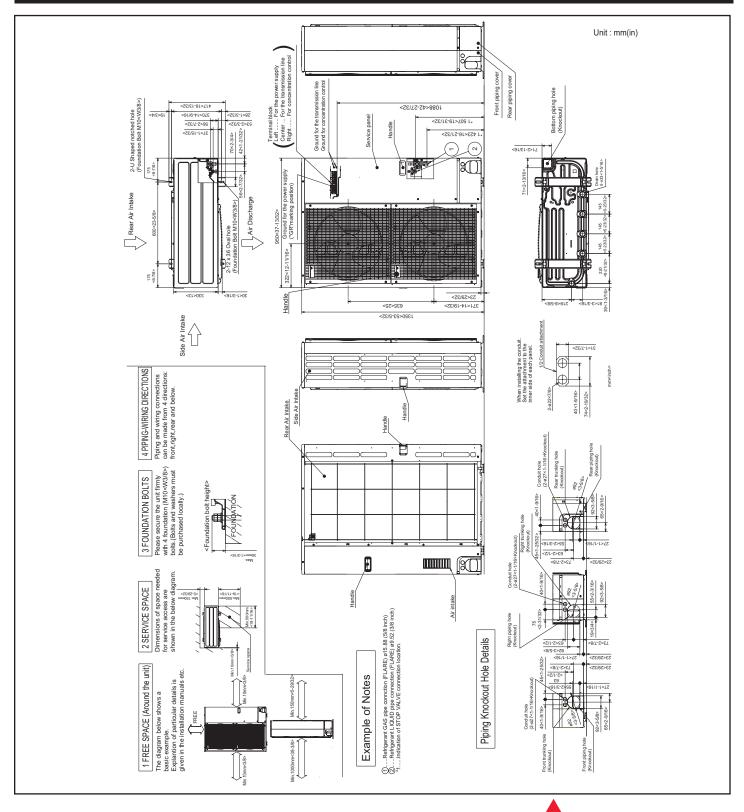
MITSUBISHI ELECTRIC

Job Name:	Location:
Drawing Reference:	Schedule No.
System No.:	Date:

OUTDOOR VRF SYSTEM FEATURES

- Single-phase outdoor unit with variable refrigerant flow zoning (VRF) technology
- Inverter-driven (variable speed) compressor
- Total refrigerant piping length of 394' (120 m)
- Uses CITY MULTI indoor units and Controls Network
- External finish: Precoated Galvanized-steel Sheets
- Operating Outdoor Temperature Range Cooling: 23°F ~ 115°F (-5° ~ +46°C) DB* Heating: 0°F ~ +60°F (-18° ~ +15°C) WB
- * If PKFY-P06/08 indoor units are connected, then range is $50^{\circ}F \sim 115^{\circ}F$ ($10^{\circ}C \sim 46^{\circ}C$).

OPTIONAL PARTS


□ Branch Joint (T-Branch)	CMY-Y62-G-E
□ Header - Four-Branch	CMY-Y64-G-E
□ Header - Eight-Branch	CMY-Y68-G-E
□ Air Outlet Guide (One Piece)**	PAC-SG59SG-E
□ Wind Baffle (One Piece)**	
□ Drain Pan	PAC-SG64DP-E
□ Drain Socket	PAC-SG61DS-E

** PUMY requires two outlet guides or wind baffles for installation.

Specifications		Model Name
Unit Ty	ре	PUMY-P36NHMU
Nominal Cooling Capacity	Btu/h	36,000
Nominal Heating Capacity	Btu/h	40,000
External Dimensions (H x W x D)	In. / mm	53-3/16 x 37-7/16 x 13 (+1-3/16) / 1,350 h x 950 w x 330 (+30)
Net Weight	Lbs. / kg	287 / 130
Electrical Power Requirements	Voltage, Phase, Hertz	208 / 230V, 1-phase, 60Hz
Cooling Power Input	kW	3.22
Heating Power Input	kW	2.93
Cooling Current (208/230V)	Α	14.2 / 15.7
Heating Current (208/230V)	A	12.9 / 14.2
Minimum Circuit Ampacity (MCA)	Α	26
Recommended Fuse/Breaker Size	Α	30
Maximum Fuse Size	Α	40
Piping Diameter (Brazed) (In. / mm)	Liquid (High Pressure)	3/8 / 9.52
Fighting Diameter (Brazed) (iii. / iiiiii)	Gas (Low Pressure)	5/8 / 15.88
Indoor Unit Total Capacity		50 to 130% of Outdoor Unit Capacity
ilidoor offit	Model / Quantity	P06 to P36 / 1 to 6
Sound Pressure Levels	dB(A)	49/51
Fan		
Type x Quantity		Propeller Fan x 2
Airflow Rate	CFM	3,530
Direct-drive Inverter Motor Output	kW	0.086
Compressor Operating Range		33% to 100%
Compressor Type x Quantity		Inverter-driven Scroll Hermetic x 1
Compressor Motor Output	kW	2.4
Refrigerant		R410A
Lubricant		FV50S
High-pressure Protection Device		601 psi / 4.15 MPa
Compressor / Fan Protection Device	9	Overheat Protection / Thermal Switch
Inverter Protection Device		Overheat / Overcurrent Protection

Blue Fin Anti-corrosion Protection: Cellulose- and polyurethane-resin coating treatment applied to condenser coil that protects it from air contaminants; ≥1µm thick; Salt Spray Test Method - no unusual rust development to 240 hours.

Model: PUMY-P36NHMU - DIMENSIONS

Certificate Number FM33568

Mitsubishi Electric Air Conditioning & Refrigeration Systems Works acquired ISO 9001 certification under Series 9000 of the International Standard Organization (ISO) based on a review of quality warranties for the production of refrigeration and air conditioning equipment.

ISO Authorization System
The ISO 9000 series is a plant authorization system relating to quality warranties as stipulated by the ISO. ISO 9001 certifies quality warranties based on the "design, development, production, installation and auxiliary services" for products built at an authorized plant.

Mitsubishi Electric & Electronics USA, Inc.

3400 Lawrenceville Suwanee Rd. Suwanee, GA 30024

Tele: 678-376-2900 • Fax: 800-889-9904

Toll Free: 800-433-4822 (#4)

www.mehvac.com

Specifications are subject to change without notice.

Engineering Manual

Includes technical specifications, guidelines, and options for selection and application of SETC B+ / SEP Steam Exchange humidifiers

5. SHORT ABSORPTION MANIFOLD (SAM-e)

A. GENERAL

- (1) NORTEC's best performing steam absorption system for use in Air Handling Units and duct systems where short steam absorption distance is critical.
- (2) The SAM-e, Figure 17, distributes clean steam, precisely controlled, uniformly into the entire air stream, void of any condensate spray. Steam distribution takes place via distributor tubes with integrated nozzles. The steam is kept dry as condensate is drained through the main header.
- (3) The stainless steel distribution tubes are typically mounted vertically but can also be mounted horizontally (10° slope) for vertical airflow applications. The distribution tubes come equipped with evenly spaced stainless steel nozzles providing optimum steam distribution, over the entire length of the tube.
- (4) The nozzles extend into the center of the distribution tube ensuring only condensate free steam is released. (See Figure 18.) Condensate drains out of the distribution tubes, through the header, eliminating the need for jacketed tubes. A permanent bond between the nozzle and distribution tube is made when the nozzle is pressed into the tube. The nozzles and tubes have the same thermal expansion characteristics guaranteeing a permanent union. The specifically sized orifices ensure consistent output from each nozzle.

Figure 17. SAM-e Tubes

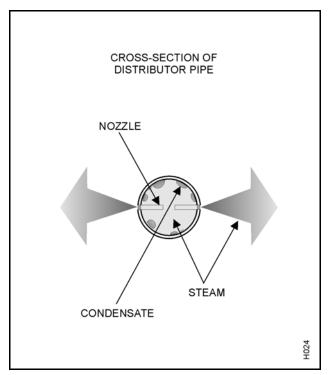
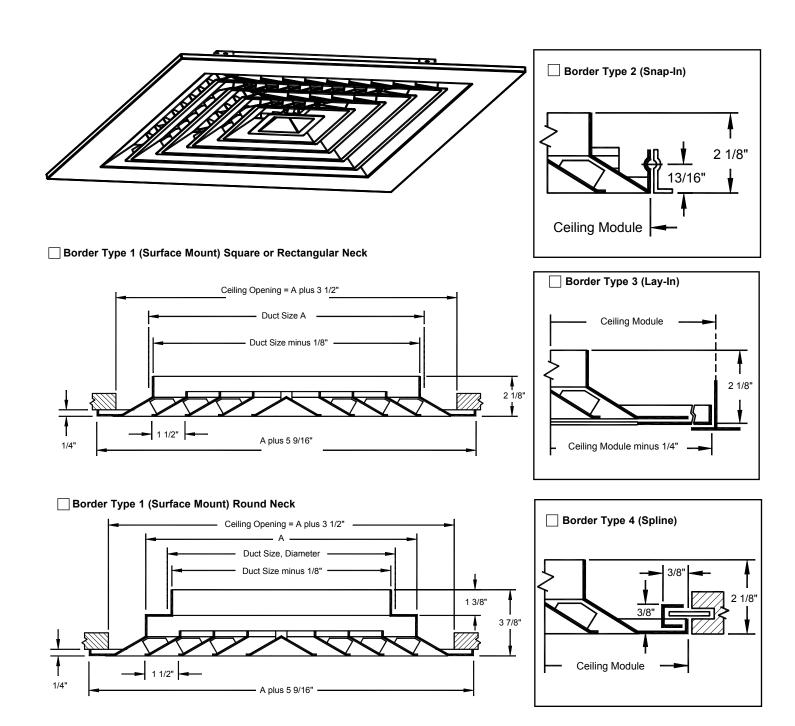
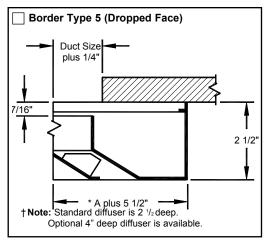
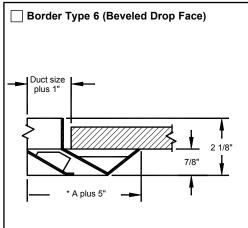


Figure 18. Cross-Section of Distributor Pipe

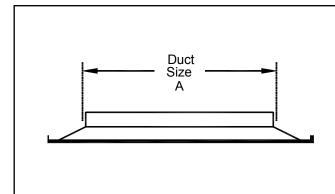

Tag	NORTEC Model	Load	Power Circuit	Stm. Press.	Max. Fuse	Quantity
19-SH-1	SETC 050, 110-120V	11.72 lbs/hr	110-120/1/60	15.00 psi	15.00 A	1
	Distribution Method				Absorption D	istance
	In Duct mini Short Absorption	Manifold (se	e option schedule)		0.32 ft	
Tag	NORTEC Model	Load	Power Circuit	Stm. Press.	Max. Fuse	Quantity
Tag 19-SH-2	NORTEC Model SETC 050, 110-120V	Load 11.72 lbs/hr	Power Circuit 110-120/1/60	Stm. Press.	Max. Fuse 15.00 A	Quantity 1
						1

Tag	NORTEC Option	Part Number	Quantity
19-SH-1	Header Insulation, mini SAM-e 18"-6 Centers	2539633	1
	Tube Insulation, mini SAM-e 11" (Covers 1 Tube)	2538869	3
	Water Filter Cartridge 5 micron (x2)	1329506	1
	In-Line Water filter c/w 5 micron filter	1329505	1
	Switch Air Proving (duct airflow safety interlock)	1329203	1
	0-10V Dig. Duct Humidistat pkg	2520266	1
	0 - 10 Vdc single channel DEMAND signal acceptance	2523066	1
	Nortee LINKS XPS for SETC 050, BACnet/MSTP	2559031	1
	Inlet adapter, mini SAM-e, 1-3/4" OD	1509837	1
	Header mini SAM-e 18", 6" centers	1509832	1
	Steam Tube, mini SAM-e, 11 in Type MB	1509798	3
Tag	NORTEC Option	Part Number	Quantity
19-SH-2	Water Filter Cartridge 5 micron (x2)	1329506	Ī
	In-Line Water filter c/w 5 micron filter	1329505	1
	Switch Air Proving (duct airflow safety interlock)	1329203	l
	0 - 10 Vdc single channel DEMAND signal acceptance	2523066	1
	0-10V Dig. Duct Humidistat pkg	2520266	1
	Header Insulation, mini SAM-e 12"-3 Centers	2538932	1
	Tube Insulation, mini SAM-e 13" (Covers 1 Tube)	2538870	3
	Nortec LINKS XPS for SETC 050, BACnet/MSTP	2559031	1
	1101to Diviso XI b for bETC 050, Differential I		
	Inlet adapter, mini SAM-e, 1-3/4" OD	1509837	1
	· · · · · · · · · · · · · · · · · · ·	1509837 1509811	1 1


D-TDV 11-11-02

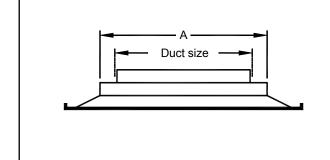

Square and Rectangular Ceiling Diffusers Steel • Louvered Face • Induction Vanes

Model: TDV • Square, Rectangle or Round Neck


Border Types, Dimensions (Continued)

***Note:** Dimension A refers to either square/rectangle or round neck diffusers. See drawings below.

Available Duct Sizes, Square and Rectangular Necks

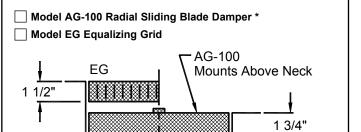


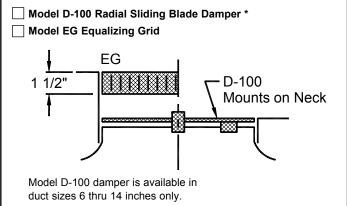
Border Type 1, 5, 6		
Minimum Duct Size A	Maximum Duct Size A	
6 x 6	48 x 48	

Border Type 2, 3, 4				
Available Module Size	Minimum Duct Size A	Maximum Duct Size A		
12 x 12	6 x 6	9 x 9		
24 x 24	6 x 6	18 x 18		
48 x 24	12 x 12	42 x 18		

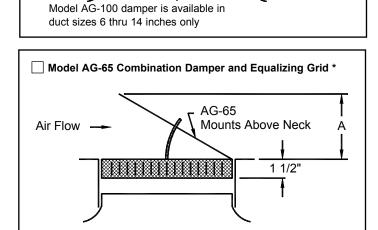
Note: Duct sizes are available in 3" increments only. Maximum duct size for border 5 is 36 x 36.

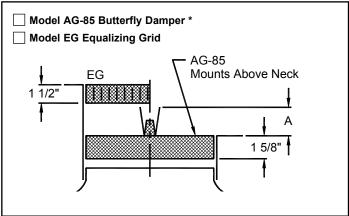
Available Duct Sizes, Round Necks

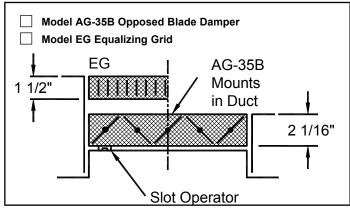


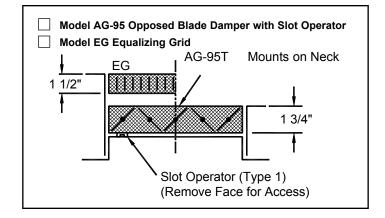

Border Type 1, 5, 6			
Dimensions A	Available Round Duct Size		
6 x 6	6		
9 x 9	6, 8		
12 x 12	8, 10, 12		
15 x 15	6, 8, 10, 12, 14		
18 x 18	6, 8, 10, 12, 14, 16		

Border Type 2,3,4				
Available Module Size	Minimum A	Available Round Duct Size		
12 x 12	6 x 6	6		
12 X 12	9 x 9	6, 8		
	6 x 6	6		
	9 x 9	6, 8		
24 x 24	12 x 12	6, 8, 10, 12		
	15 x 15	6, 8, 10, 12, 14		
	18 x 18	6, 8, 10, 12		
		14, 16		


*Note: Round duct sizes are available only in sizes shown.


Accessories (Optional) for Round Neck




Check if provided

Accessories (Optional) for Rectangular Neck

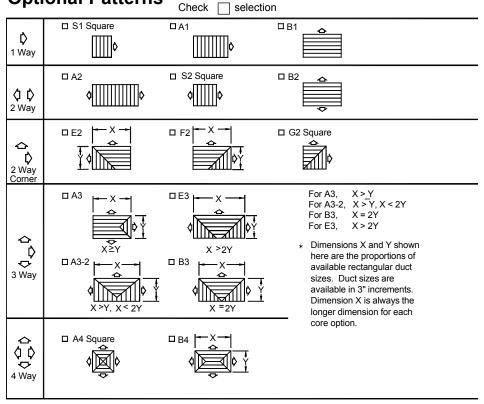
All dimensions are in inches.

Accessories (Optional)

Check if provided

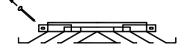
Λ.	cessories		Nom				
^0	Cessones	6	8	10	12	14	16
	AG-100	•	•	•	•	•	N/A
	D-100	•	•	•	•	•	N/A
	AG-85	•	•	•	•	•	•
	AG-65	•	•	•	•	•	•
	EG	•	•	•	•	•	•
	EQT	•	•	•	•	•	•

Accessories	Nominal Rectangular Duct Sizes
AG-95 Type 1	
AG-35B	Available in Cines
EG-L/EG-S	Available in Sizes 6 x 6 through 18 x 18
AG-65-L/AG-65-S	o x o allough to x to
EQT	

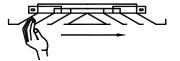

Available Sizes

Other Accessories (Optional)

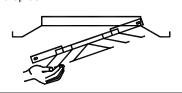
Standard Finish: #26 White


Model SR Square-to-Round Transition

Optional Patterns



Removing Center Core


1. Remove shipping clips.

2. Push core sideways against spring.

3. Hold core securely and allow to drop down.

General Description

- TITUS Model TDV is a high capacity ceiling diffuser. Because it maintains an unbroken horizontal flow pattern from maximum cfm down to minimum, it is an excellent choice for variable air volume application.
- · Core is removable from the face of the diffuser.
- Slot operator on optional, neck-mounted Model AG-95 damper allows easy volume adjustment by removing the diffuser core. (Rectangular necks only).
- Model TDV is extremely flexible, with cores available for 1, 2, 3 or 4-way horizontal flow patterns.
- · Material is heavy gauge steel.
- The TITUS TDV has louvered face with integrated induction vanes for exceptional air mixing.

Diffusers | Square and Rectangular, Induction Vanes | Performance Data

Performance Data • Round Neck

TDV • Louvered Face, Induction Vanes • Horizontal Discharge Pattern

		ace, inductio														
	Factors	Total cfm		78	,	98		117		137	,	156		176		215
	1.1 TP I to NC	Total Pressure NC	, L).031 9	().050 15).071 20	().097 24	(0.126 28	· '	0.160 31	().239 37
Auu 1	LUNC	Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
6	S1	X	78	6-9-17	98	7-11-20	117	9-13-21	137	10-15-23	156	12-17-25	176	13-19-26	215	16-21-29
X	S2&G2	X & Y	39	3-5-10	49	4-6-12	59	5-7-15	69	6-9-16	78	6-10-17	88	7-11-19	108	9-13-21
6	A3	X	28	3-4-8	37	3-5-9	44	4-6-9	52	5-7-10	59	5-8-11	66	6-8-12	81	7-9-13
6"		Υ	19	2-3-6	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13
Round	A4	X & Y	19	2-3-6	29	3-4-8	34	3-5-9	39	4-5-10	44	4-6-11	54	5-7-12	64	6-8-13
	Factors	Total cfm		98		117		137		156		176		215		254
	1.1 TP	Total Pressure	C	0.050	(0.071	(0.097	(0.126	(0.160	'	0.239	(0.334
Add 1	I to NC	NC C:d-	-6	15	-6	20	-6	24	-6	28	-6	31		37	-6	41
9	S1	Side X	cfm 98	Throw 7-11-20	cfm 117	Throw 9-13-21	cfm 137	Throw 10-15-23	cfm 156	Throw 12-17-25	cfm 176	Throw 13-19-26	cfm 215	Throw 16-21-29	cfm 254	Throw 18-22-32
X	S2&G2	X & Y	49	4-6-12	59	5-7-15	69	6-9-16	78	6-10-17	88	7-11-19	108	9-13-21	127	11-16-22
9	A3	X	37	3-5-9	44	4-6-9	52	5-7-10	59	5-8-11	66	6-8-12	81	7-9-13	96	8-10-14
6"	/.5	Ŷ	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13	64	7-10-14
Round	A4	X & Y	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13	64	7-10-14
Return	Factors	Total cfm		139		174		209		244		279		314		383
	1.1 TP	Total Pressure	C).032	().049	C	0.071	(0.097	(0.127		0.161	(0.239
Add 1	L to NC	NC		10		16		21		25		29		32		38
	C1	Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
9	S1	X	139	8-12-23	174	10-15-26	209	12-18-29	244	14-21-31	279	16-23-33	314	18-25-35	383	22-27-39
х 9	S2&G2	X & Y	70	4-6-13	87	5-8-16	105	6-10-19	122	8-11-22	140	9-13-23 7-10-15	157	10-15-25	192	12-18-27
8"	A3	X Y	52 35	4-5-10 3-4-8	66 44	4-7-11 3-5-10	79 52	5-8-13 4-6-12	92 61	6-9-14 5-7-14	105 70	6-8-15	119 79	8-11-15 6-9-16	145 96	10-12-17 8-11-17
Round	A4	X & Y	35	3-4-8	44	3-5-10	52	4-6-12	61	5-7-14	70	6-8-15	79	6-9-16	96	8-11-17
	Factors	Total cfm		174		209		244		279	,,,	314	, ,	383		453
	1.1 TP	Total Pressure		0.049	(0.071).097		0.127	(0.161		0.239		0.335
	L to NC	NC	ľ	16	`	21	ĺ	25] `	29	'	32		38] `	42
		Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
12	S1	X	174	10-15-26	209	12-18-29	244	14-21-31	279	16-23-33	314	18-25-35	383	22-27-39	453	24-30-42
Х	S2&G2	X & Y	87	5-8-16	105	6-10-19	122	8-11-22	140	9-13-23	157	10-15-25	192	12-18-27	227	14-21-30
12	A3	X	66	4-7-11	79	5-8-13	92	6-9-14	105	7-10-15	119	8-11-15	145	10-12-17		11-13-18
8" Pound	Λ.4	Y	44	3-5-10	52	4-6-12	61	5-7-14	70	6-8-15	79	6-9-16	96	8-11-17	113	9-13-19
Round	A4 Factors	X & Y Total cfm	44	3-5-10 218	52	4-6-12 272	61	5-7-14 327	70	6-8-15 381	79	6-9-16 447	96	8-11-17 490	113	9-13-19 599
	Factors 1.1 TP	Total Pressure		218).032		272).049).072	(0.097	(0.127		490 0.161		599 0.240
	L to NC	NC		11		17		22		26	(30		33		38
, lud 1	20110	Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
12	S1	X	218	10-15-29	272	12-18-33	327	15-22-36	381	17-26-39	436	20-29-41	490	22-31-44	599	27-34-48
х	S2&G2	X & Y	109	5-8-16	136	7-10-20	164	8-12-24	191	9-14-27	218	11-16-29	245	12-18-31	300	15-22-34
12	A3	Х	82	4-7-13	103	6-8-14	123	7-10-16	144	8-12-17	165	9-13-18	185	10-14-19	226	12-15-21
10"		Y	55	3-5-10	68	4-6-13	82	5-8-16	95	6-9-17	109	7-10-18	123	8-12-20	150	9-14-22
Round	A4	X & Y	55	3-5-10	68	4-6-13	82	5-8-16	95	6-9-17	109	7-10-18	123	8-12-20	150	9-14-22
	Factors	Total Crossure		235		314		392		471	,	549		628		706
	1.1 TP I to NC	Total Pressure NC	'	0.020	().035 15	۱ ').055 20).079 25	۱ '	0.107 29	Ι '	0.140 33	۱ (0.177 36
Auu 1	LUIVC	Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
12	S1	X	235	9-14-27		12-18-35		15-23-39	471	18-27-43	549	21-32-46		24-35-50		27-37-53
X	S2&G2	X & Y	118	5-7-15	157	7-10-20	196	8-12-25	236	10-15-30		12-17-33		13-20-35		15-22-37
12	A3	X	89	4-6-12	119	5-8-15	148	7-10-17	178	8-12-19		10-14-20		11-15-22		12-16-23
12"		Y	59	2-5-10	79	4-6-13	98	5-8-16	118	6-10-19	137	7-11-21	157	8-13-22		10-14-23
	A 4	X & Y	59	2-5-10	79	4-6-13	98	5-8-16	118	6-10-19	137	7-11-21	157	8-13-22		10-14-23
Round				314		392		471		549		623		706		863
Round Return	Factors	Total cfm							- (1 1(1)/		0.138				0.264
Round Return -SP =	Factors 1.1 TP	Total Pressure		0.035	().055	C).079	(0.107	,			0.177	(
Round Return -SP =	Factors	Total Pressure NC	C).035 13		19		24		28		32		35		40
Round Return -SP = Add 1	Factors 1.1 TP I to NC	Total Pressure NC Side	cfm	0.035 13 Throw	cfm	19 Throw	cfm	24 Throw	cfm	28 Throw	cfm	32 Throw	cfm	35 Throw	cfm	40 Throw
Round Return -SP = Add 1	Factors 1.1 TP 1 to NC	Total Pressure NC Side X	cfm 314	0.035 13 Throw 12-18-35	cfm 392	19 Throw 15-23-39	cfm 471	24 Throw 18-27-43	cfm 549	28 Throw 21-32-46	cfm 623	32 Throw 24-35-49	cfm 706	35 Throw 27-37-53	cfm 863	40 Throw 33-41-58
Round Return -SP = Add 1	Factors 1.1 TP I to NC S1 S2&G2	Total Pressure NC Side X X & Y	cfm 314 157	0.035 13 Throw 12-18-35 7-10-20	cfm 392 196	19 Throw 15-23-39 8-12-25	cfm 471 236	24 Throw 18-27-43 10-15-30	cfm 549 275	28 Throw 21-32-46 12-17-33	cfm 623 312	32 Throw 24-35-49 13-20-35	cfm 706 353	35 Throw 27-37-53 15-22-37	cfm 863 432	40 Throw
Round Return -SP = Add 1	Factors 1.1 TP 1 to NC	Total Pressure NC Side X	cfm 314	0.035 13 Throw 12-18-35	cfm 392	19 Throw 15-23-39 8-12-25 7-10-17	cfm 471	24 Throw 18-27-43 10-15-30 8-12-19	cfm 549	28 Throw 21-32-46	cfm 623	32 Throw 24-35-49 13-20-35 11-15-22	cfm 706 353	35 Throw 27-37-53	cfm 863 432 326	40 Throw 33-41-58 18-27-41
Round Return -SP = Add 1 15 x 15	Factors 1.1 TP I to NC S1 S2&G2	Total Pressure NC Side X X & Y X	cfm 314 157 119	0.035 13 Throw 12-18-35 7-10-20 5-8-15	cfm 392 196 148	19 Throw 15-23-39 8-12-25	cfm 471 236 178	24 Throw 18-27-43 10-15-30	cfm 549 275 207	28 Throw 21-32-46 12-17-33 10-14-20	cfm 623 312 235	32 Throw 24-35-49 13-20-35	cfm 706 353 267	35 Throw 27-37-53 15-22-37 12-16-23	cfm 863 432 326 216	40 Throw 33-41-58 18-27-41 15-18-26

- All pressures are in inches of water.
- Throw velocities given are for isothermal terminal velocities of 150, 100 and 50 fpm. See the section, Engineering Guidelines for additional information.
- NC values based on Octave Band 2 to 7 sound power levels minus a room absorption of 10 dB.
- Dash (-) in space denotes an NC value less than 10.
- Data obtained from tests conducted in accordance with ANSI/ASHRAE Standard 70-2006.
- Throw values given are for isothermal conditions.

Diffusers | Square and Rectangular, Induction Vanes | Performance Data

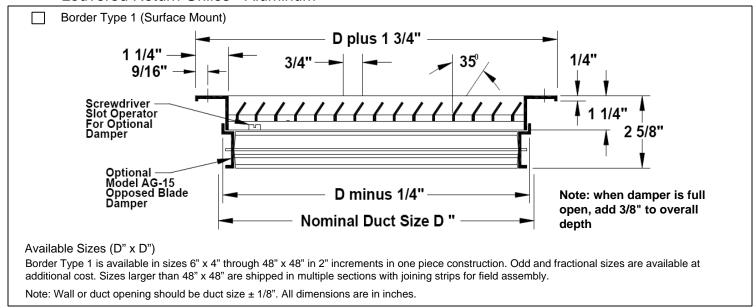
Performance Data • Round Neck (continued)
TDV • Louvered Face, Induction Vanes • Horizontal Discharge Pattern

F178

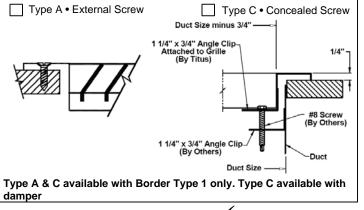
Return	Factors	Total cfm		320		427		534		641		748		855		863
-SP =	1.1 TP	Total Pressure	(0.018	(0.032	(0.050	(0.072	(0.097	(0.127	(0.130
Add 1	to NC	NC		5		12		18		23		27		31		31
		Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
15	S1	X	320	10-15-31	427	14-21-41	534	17-26-46	641	21-31-50	748	24-36-54	855	28-41-58	863	28-41-58
Х	S2&G2	X & Y	160	6-9-17	214	8-11-23	267	9-14-28	321	11-17-34	374	13-20-38	428	15-23-41	432	15-23-41
15	A3	X	121	4-7-14	161	6-9-18	202	8-12-20	242	9-14-22	282	11-16-24	323	12-18-25	326	13-18-26
14"		Y	80	3-5-11	107	5-7-14	134	6-9-18	160	7-11-22	187	8-13-24	214	10-14-26	216	10-15-26
Round	A4	X & Y	80	3-5-11	107	5-7-14	134	6-9-18	160	7-11-22	187	8-13-24	214	10-14-26	216	10-15-26
	Factors	Total cfm		98		117		137		156		176		215		254
	1.1 TP	Total Pressure	(0.048	(0.069	(0.094	(0.122	(0.155	(0.232	(0.324
Add 1	to NC	NC		15		20		24		28		31	_	37	_	41
<u> </u>		Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
18	S1	X	98	7-11-20	117	9-13-21	137	10-15-23	156	12-17-25	176	13-19-26	215	16-21-29	254	18-22-32
Х	S2&G2	X & Y	49	4-6-12	59	5-7-15	69	6-9-16	78	6-10-17	88	7-11-19	108	9-13-21	127	11-16-22
18	A3	X	37	3-5-9	44	4-6-9	52	5-7-10	59	5-8-11	66	6-8-12	81	7-9-13	96	8-10-14
6"		Y	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13	64	7-10-14
Round	A4	X & Y	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13	64	7-10-14
	Factors	Total cfm	174		209			244		279	,	314		383		453
	1.1 TP	Total Pressure	0.047		0.067		(0.092	(0.120	(0.152	(0.226	(0.317
Add 1	to NC	NC Sido	16	Throw	21 cfm	Throw	cfm	25 Throw	cfm	29 Throw	cfm	32 Throw	cfm	38 Throw	cfm	42 Throw
10	C1	Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
18	S1	X	174	10-15-26	209	12-18-29	244	14-21-31 8-11-22	279	16-23-33	314	18-25-35	383	22-27-39	453	24-30-42
18	S2&G2	X & Y	87	5-8-16 4-7-11	105	6-10-19	122		140	9-13-23	157	10-15-25	192	12-18-27	227	14-21-30 11-13-18
18 8"	A3	X Y	66 44	3-5-10	79 52	5-8-13 4-6-12	92 61	6-9-14 5-7-14	105 70	7-10-15 6-8-15	119 79	8-11-15 6-9-16	145 96	10-12-17 8-11-17	171 113	9-13-19
	A4	X & Y	44	3-5-10	52	4-6-12	61	5-7-14	70	6-8-15	79	6-9-16	96	8-11-17	113	9-13-19
Round			44		52		01		70		/9		90		113	
	Factors	Total Crossure	Ι,	218	,	272	,	327	,	381	,	436	Ι,	490	,	599
	1.1 TP	Total Pressure	l '	0.029		0.045		0.066	(0.089		0.117	'	0.147	(0.220
Add 1	to NC	NC Side	cfm	11 Throw	cfm	17 Throw	cfm	22 Throw	cfm	26 Throw	cfm	30 Throw	cfm	33 Throw	cfm	38 Throw
10	S1	X	218	10-15-29	272	12-18-33	cfm 327	15-22-36	cfm 381	17-26-39	cfm 436	20-29-41	cfm 490	22-31-44	cfm 599	27-34-48
18 x	S2&G2	X & Y	109	5-8-16	136	7-10-20	164	8-12-24	191	9-14-27	218	11-16-29	245	12-18-31	300	15-22-34
18	A3													12-10-31	300	
10			27			6-2-14	172	7_10_16	1/1/1	Q_17_17	165	0_12_10	105	10_14_10	226	17_15_71
10"	AS	X	82 55	4-7-13 3-5-10	103 68	6-8-14 4-6-13	123 82	7-10-16 5-8-16	144 95	8-12-17 6-9-17	165	9-13-18 7-10-18	185	10-14-19 8-12-20		12-15-21 9-14-22
10" Round		Y	55	3-5-10	68	4-6-13	82	5-8-16	95	6-9-17	109	7-10-18	123	8-12-20	150	9-14-22
Round	A4	Y X & Y		3-5-10 3-5-10		4-6-13 4-6-13		5-8-16 5-8-16		6-9-17 6-9-17		7-10-18 7-10-18		8-12-20 8-12-20	150 150	9-14-22 9-14-22
Round Return	A4 Factors	Y X & Y Total cfm	55 55	3-5-10 3-5-10 314	68 68	4-6-13 4-6-13 392	82 82	5-8-16 5-8-16 471	95 95	6-9-17 6-9-17 549	109 109	7-10-18 7-10-18 623	123 123	8-12-20 8-12-20 706	150 150	9-14-22 9-14-22 863
Round Return -SP =	A4 Factors 1.1 TP	Y X & Y Total cfm Total Pressure	55 55	3-5-10 3-5-10 314 0.031	68 68	4-6-13 4-6-13 392).048	82 82	5-8-16 5-8-16 471 0.070	95 95	6-9-17 6-9-17 549 0.095	109 109	7-10-18 7-10-18 623 0.122	123 123	8-12-20 8-12-20 706 0.157	150 150	9-14-22 9-14-22 863 0.234
Round Return -SP =	A4 Factors	Y X & Y Total cfm Total Pressure NC	55 55	3-5-10 3-5-10 314 0.031 13	68	4-6-13 4-6-13 392).048 19	82 82	5-8-16 5-8-16 471 0.070 24	95 95 (6-9-17 6-9-17 549 0.095 28	109	7-10-18 7-10-18 623 0.122 32	123	8-12-20 8-12-20 706 0.157 35	150 150	9-14-22 9-14-22 863 0.234 40
Round Return -SP = Add 1	A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side	55 55 cfm	3-5-10 3-5-10 314 0.031 13 Throw	68 68 (cfm	4-6-13 4-6-13 392).048 19 Throw	82 82 (cfm	5-8-16 5-8-16 471 0.070 24 Throw	95 95 (cfm	6-9-17 6-9-17 549 0.095 28 Throw	109 109 (cfm	7-10-18 7-10-18 623 0.122 32 Throw	123 123 cfm	8-12-20 8-12-20 706 0.157 35 Throw	150 150 (cfm	9-14-22 9-14-22 863 0.234 40 Throw
Round Return -SP = Add 1	A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X	55 55 cfm 314	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35	68 68 (cfm 392	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39	82 82 cfm 471	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43	95 95 (cfm 549	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46	109 109 (cfm 623	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49	123 123 cfm 706	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53	150 150 (cfm 863	9-14-22 9-14-22 863).234 40 Throw 33-41-58
Round Return -SP = Add 1 18 x	A4 Factors 1.1 TP to NC S1 S2&G2	Y X & Y Total cfm Total Pressure NC Side X X & Y	55 55 cfm 314 157	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20	68 68 cfm 392 196	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25	82 82 cfm 471 236	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30	95 95 (cfm 549 275	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33	109 109 cfm 623 312	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35	123 123 cfm 706 353	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37	150 150 cfm 863 432	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41
Round Return -SP = Add 1 18 x 18	A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X	55 55 cfm 314 157 119	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15	68 68 cfm 392 196 148	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17	82 82 cfm 471 236 178	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19	95 95 cfm 549 275 207	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20	109 109 cfm 623 312 235	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22	123 123 cfm 706 353 267	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23	150 150 cfm 863 432 326	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26
Round Return -SP = Add 1 18 x 18 12"	A4 Factors 1.1 TP to NC S1 S2&G2 A3	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y Y	55 55 cfm 314 157	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13	68 68 cfm 392 196	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16	82 82 cfm 471 236	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19	95 95 (cfm 549 275	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21	109 109 cfm 623 312 235 156	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22	123 123 cfm 706 353	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23	150 150 cfm 863 432 326 216	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26
Round Return -SP = Add 1 18 x 18 12" Round	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y	55 55 cfm 314 157 119 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13	cfm 392 196 148 98	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19	95 95 (cfm 549 275 207 137	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21	109 109 cfm 623 312 235	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22	123 123 cfm 706 353 267 177	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23	150 150 cfm 863 432 326 216 216	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26
Round Return -SP = Add 1 18 x 18 12" Round Return	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm	55 55 cfm 314 157 119 79 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13	68 68 (cfm 392 196 148 98	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 641	95 95 (cfm 549 275 207 137	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21	109 109 (cfm 623 312 235 156 156	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 855	123 123 cfm 706 353 267 177 177	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23	150 150 cfm 863 432 326 216	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26
Round Return -SP = Add 1 18 x 18 12" Round Return -SP =	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y	55 55 cfm 314 157 119 79 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13	68 68 (cfm 392 196 148 98	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19	95 95 (cfm 549 275 207 137	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21	109 109 (cfm 623 312 235 156 156	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22	123 123 cfm 706 353 267 177 177	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23	150 150 cfm 863 432 326 216	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26
Round Return -SP = Add 1 18 x 18 12" Round Return -SP =	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure	55 55 cfm 314 157 119 79 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027	68 68 (cfm 392 196 148 98	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23	95 95 (cfm 549 275 207 137	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27	109 109 (cfm 623 312 235 156 156	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-55 0.106 31	123 123 cfm 706 353 267 177 177	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23	150 150 cfm 863 432 326 216	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 1175 0.201
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm	55 55 cfm 314 157 119 79 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12	68 68 cfm 392 196 148 98	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060	95 95 (cfm 549 275 207 137	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 748 0.081 27 Throw	109 109 (cfm 623 312 235 156	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106 31 Throw	123 123 cfm 706 353 267 177	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34	150 150 cfm 863 432 326 216 216	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 1175 0.201 40 Throw
Round Return -SP = Add 1 18 x 18 12" Round Return -SP =	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total Pressure NC Side	55 55 cfm 314 157 119 79 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw	68 68 cfm 392 196 148 98	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042 18 Throw	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw	95 95 (cfm 549 275 207 137 137	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27	109 109 cfm 623 312 235 156 156	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-55 0.106 31	123 123 cfm 706 353 267 177 177	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw	150 150 cfm 863 432 326 216 216	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 175).201 40 Throw 38-48-68
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2 S5	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X	55 55 cfm 314 157 119 79 79 cfm 427	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23	68 68 cfm 392 196 148 98 98	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042 18 Throw 17-26-46	82 82 cfm 471 236 178 118 118	5-8-16 5-8-16 471 .0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 .0.060 23 Throw 21-31-50	95 95 (cfm 549 275 207 137 137 (cfm 748	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-8 0.081 27 Throw 24-36-54	109 109 (cfm 623 312 235 156 156 (cfm 855 428	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-55 0.106 31 Throw 28-41-58 15-23-41	123 123 cfm 706 353 267 177 177 cfm	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61	150 150 (cfm 863 432 326 216 216 (cfm 1175 588	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 175).201 40 Throw 38-48-68 21-31-48
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X X & Y	55 55 cfm 314 157 119 79 79 cfm 427 214	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41	68 68 (cfm 392 196 148 98 98 (cfm 534 267	4-6-13 4-6-13 392 048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 042 18 Throw 17-26-46 9-14-28	82 82 cfm 471 236 178 118 118 cfm 641 321 242	5-8-16 5-8-16 471 .0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 .0.060 23 Throw 21-31-50 11-17-34	95 95 95 cfm 549 275 207 137 137 cfm 748 374	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 748 0.081 27 Throw 24-36-54 13-20-38	109 109 cfm 623 312 235 156 156 cfm 855 428 323	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-5 0.106 31 Throw 28-41-58	123 123 123 cfm 706 353 267 177 177 cfm 962 481 363	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27	150 150 (cfm 863 432 326 216 216 (cfm 1175 588 444	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 175 0.201 40 Throw 38-48-68 21-31-48 17-21-30
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side NC Side X X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y	55 55 cfm 314 157 119 79 79 cfm 427 214 161	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-4 0.042 18 Throw 17-26-46 9-14-28 8-12-20	82 82 cfm 471 236 178 118 118 cfm 641 321 242 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22	95 95 (cfm 549 275 207 137 137 (cfm 748 374 282	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 748 0.081 27 Throw 24-36-54 13-20-38 11-16-24	109 109 109 cfm 623 312 235 156 156 cfm 855 428 323 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106 31 Throw 28-41-58 15-23-41 12-18-25	123 123 123 cfm 706 353 267 177 177 cfm 962 481 363 241	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27	150 150 150 cfm 863 432 326 216 216 cfm 1175 588 444 294	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 1175).201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors A4 Factors A3	Y X & Y Total cfm Total Pressure NC Side X X & Y Y	55 55 cfm 314 157 119 79 79 cfm 427 214 161 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18	cfm 392 196 148 98 98 cfm 534 267 202 134	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-4 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18	82 82 cfm 471 236 178 118 118 cfm 641 321 242 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22	95 95 95 cfm 549 275 207 137 137 cfm 748 374 282 187	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-41-21 748 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24	109 109 109 (cfm 623 312 235 156 156 (cfm 855 428 323 214 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26	123 123 123 cfm 706 353 267 177 177 cfm 962 481 363 241 241	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27	150 150 (cfm 863 432 216 (cfm 1175 588 444 294 294	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 1175).201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors A4	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y	55 55 55 cfm 314 157 79 79 cfm 427 214 161 107 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18	82 82 (cfm 471 236 178 118 118 (cfm 641 321 242 160 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22	95 95 (cfm 549 275 207 137 137 (cfm 748 374 282 187	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-41-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24	109 109 (cfm 623 312 235 156 156 (cfm 855 428 323 214 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 10-106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26	123 123 123 123 123 126 177 177 177 177 177 177 183 183 183 183 183 183 183 184 184 184 184 184 184 184 184 184 184	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27	150 150 (cfm 863 432 216 216 (cfm 1175 588 444 294 294	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 11-75).201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors A3 A4 Factors	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Y Total cfm Total Pressure NC Side X Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total Cfm Total Cfm Total Cfm	55 55 55 cfm 314 157 79 79 cfm 427 214 161 107 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 4-7 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 5-7-14 628	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134	4-6-13 4-6-13 392).048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 534).042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18	82 82 (cfm 471 236 178 118 118 (cfm 641 321 242 160 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 6-41 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837	95 95 (cfm 549 275 207 137 137 (cfm 748 374 282 187	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977	109 109 (cfm 623 312 235 156 156 (cfm 855 428 323 214 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-21 11-15-22 8-13-22 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-25 1	123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 241	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27	150 150 (cfm 863 432 216 216 (cfm 1175 588 444 294 294	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 12-17-26 12-13-40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30 1808
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 Factors 1.1 TP A4 Factors 1.1 TP A4 Factors 1.1 TP	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y Total cfm Total Pressure NC Side Total Pressure NC Side	55 55 55 cfm 314 157 79 79 cfm 427 214 161 107 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 5-7-14 628 0.032	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134	4-6-13 4-6-13 392).048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534).042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18 6-9-18	82 82 (cfm 471 236 178 118 118 (cfm 641 321 242 160 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 6-10-19 3.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056	95 95 (cfm 549 275 207 137 137 (cfm 748 374 282 187	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977 0.077	109 109 (cfm 623 312 235 156 156 (cfm 855 428 323 214 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 10-14-26 0.126	123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 241	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 1530 0.188	150 150 (cfm 863 432 216 216 (cfm 1175 588 444 294 294	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 1175).201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30 1808).262
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 Factors 1.1 TP A4 Factors 1.1 TP A4 Factors 1.1 TP	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total Pressure NC Side X Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC NC Side NC Side NC Side NC NC Side NC	55 55 55 55 cfm 314 157 119 79 79 cfm 427 214 161 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 6-28 0.032 16	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-34 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18 6-9-18 6-98 0.039 19	82 82 (cfm 471 236 178 118 118 (cfm 641 321 242 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056 24	95 95 (cfm 549 275 207 137 137 (cfm 748 374 282 187	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 748 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977 0.077 28	109 109 (cfm 623 312 235 156 156 (cfm 855 428 323 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 10-14-26 10.126 35 Throw	123 123 123 123 126 177 177 177 177 177 177 177 177 177 17	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 1530 0.188 40 Throw	150 (cfm 863 432 326 216 216 (cfm 1175 588 444 294 294	9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 175 0.201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 1808 0.262 45 Throw
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y Total Cfm Total Pressure NC Side Side X X & Y X & Y X & Y X & Y Side X & Y Side X & Y Side X & Y Side Side Side Side	55 55 55 cfm 314 157 119 79 79 79 cfm 427 214 161 107 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 4-27 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 628 0.032 16 Throw 18-27-50	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134 134	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 698 0.039 19 Throw 20-30-52	82 82 cfm 471 236 178 118 118 (cfm 641 321 242 160 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056 24 Throw 24-35-57	95 95 95 (cfm 549 275 207 137 (cfm 748 374 282 187 (cfm	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 8-13-24 977 0.077 28 Throw 28-41-62	109 109 (cfm 623 312 235 156 156 (cfm 6855 428 323 214 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-55 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 0.126 35 Throw 35-50-70	123 123 123 123 123 126 706 353 267 177 177 177 177 481 363 241 241 1530	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 1530 0.188 40 Throw	150 (cfm 863 432 216 216 (cfm 1175 588 444 294 294 (cfm 1808	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 1175).201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 1808).262 45 Throw 49-60-84
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors S1 S2&G2 A3 A4 Factors S1 S2&G2 A3 A4 Factors S1 S2&G2 A3	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y	55 55 55 cfm 314 157 119 79 79 cfm 427 214 161 107 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 628 0.032 16 Throw	68 68 (cfm 392 196 148 98 (cfm 534 267 202 134 134	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-4 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18 698 0.039 19 Throw	82 82 (cfm 471 236 178 118 118 (cfm 641 321 242 160 160 (cfm 837	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 6-41 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056 24 Throw	95 95 95 (cfm 549 275 207 137 (cfm 748 374 282 187 187	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 7-18 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977 0.077 28 Throw 28-41-62 15-23-44 12-19-27	109 109 109 109 623 312 235 156 156 0 cfm 855 428 323 214 214 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 11-15-20	123 123 123 123 123 126 706 353 267 177 177 177 177 481 363 241 241 1530	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27	150 150 (cfm 863 432 216 216 216 (cfm 1175 588 444 294 294 (cfm 1808 904 683	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 12-17-26 12-17-30 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30 13-20-30 13-20-30 40 Throw 49-60-84 28-42-60 21-26-37
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y	55 55 55 55 cfm 314 157 119 79 cfm 427 214 161 107 107 cfm 628 314	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 628 0.032 16 Throw 18-27-50 10-15-29	68 68 (cfm 392 196 148 98 (cfm 534 267 202 134 134 (cfm 698 349	4-6-13 4-6-13 392).048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-8-16 10-42 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18 6-9-18 6-9-18 19 Throw 20-30-52 11-16-32	82 82 (cfm 471 236 178 118 (cfm 641 321 242 160 160 (cfm 837 419	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056 24 Throw 24-35-57 13-19-39	95 95 95 (cfm 549 275 207 137 (cfm 748 374 282 187 187 (cfm 977 488	6-9-17 6-9-17 5-49 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 8-13-24 977 0.077 28 Throw 28-41-62 15-23-44	109 109 109 109 623 312 235 156 156 0 cfm 855 428 323 214 214 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-55 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 0.126 35 Throw 35-50-70	123 123 123 123 123 126 706 353 267 177 177 177 177 26m 962 241 241 241 1530 765	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27	150 150 (cfm 863 432 216 216 216 (cfm 1175 588 444 294 294 (cfm 1808 904 683	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 12-17-26 12-17-30 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30 13-20-30 13-20-30 40 Throw 49-60-84 28-42-60 21-26-37
Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y	55 55 55 cfm 314 157 119 79 79 cfm 427 214 161 107 107 cfm 628 314 237	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 4-6-13 4-27 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 5-7-14 628 0.032 16 Throw 18-27-50 10-15-29 8-12-22	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134 134 (cfm 698 349 263	4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18 698 0.039 19 Throw 20-30-52 11-16-32 9-13-23	82 82 (cfm 471 236 178 118 118 242 160 160 (cfm 837 419 316	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 6-10-19 6-10-19 11-17-34 9-14-22 7-11-22 7-11-22 837 0.056 24 Throw 24-35-57 13-19-39 11-16-25	95 95 95 (cfm 549 275 207 137 137 (cfm 748 374 187 187 (cfm 977 488 369	6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 7-18 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977 0.077 28 Throw 28-41-62 15-23-44 12-19-27	109 109 109 109 109 623 312 235 156 156 156 428 323 3214 214 214 214 214 214 214 214	7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 11-15-20	123 123 123 123 123 126 706 353 267 177 177 177 962 481 241 241 1530 765 578	8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27 11-16-27	150 150 (cfm 863 326 216 216 (cfm 1175 588 444 294 294 (cfm 1808 904 683 452	9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 11-75).201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30 1808).262 45 Throw 49-60-84 28-42-60

- All pressures are in inches of water.
- Throw velocities given are for isothermal terminal velocities of 150, 100 and 50 fpm. See the section, Engineering Guidelines for additional information.
- NC values based on Octave Band 2 to 7 sound power levels minus a room absorption of 10 dB.
- Dash (-) in space denotes an NC value less than 10.
- Data obtained from tests conducted in accordance with ANSI/ASHRAE Standard 70-2006.
- Throw values given are for isothermal conditions.

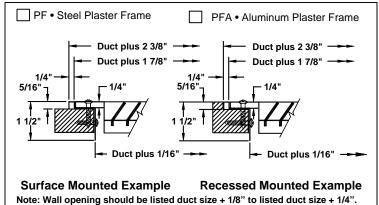
Submittal


G-350F-1.0

10-1-10


- ☐ 350FL
- 35° Deflection
- Long Blades
- 3/4" Blades Spacing

- 350FS
- 35° Deflection
- Short Blades
- 3/4" Blades Spacing

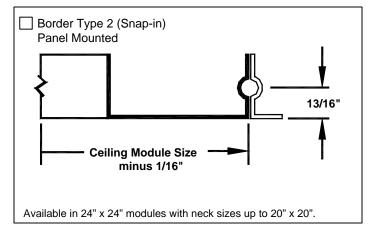

Louvered Return Grilles • Aluminum

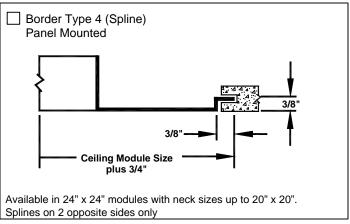
Fastenings

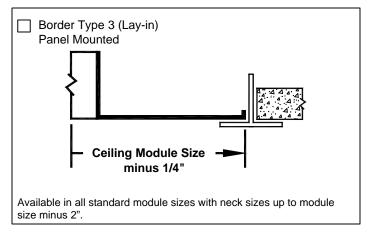
Mounting Frames

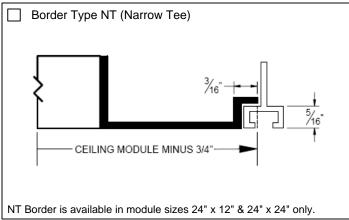
Accessories (Optional) Check 🗹 if provided.

- Neck mounted opposed blade damper (galvanized steel)
- IS Insect Screen (1/16" square mesh galvanized steel)
- ☐ EQT Earthquake Tabs
- DS Debris Screen (¼" square mesh galvanized steel)
- Other: _____


Standard Finish: #26 White


Other Finish: _____


General Description


- Available with louvers vertical or horizontal.
- #8 x 11/4" lg. Phillips flat head sheet metal screws painted white.
- Optional opposed blade damper has screwdriver adjustment accessible through face of grille.
- Insect screen & debris screen are not available with damper option
- Material is Aluminum.
- All dimensions are ± 1/16".

Optional Border Types Available

Border Type 2, 3, 4, NT

Accessories & Options
 Check if provided.

AG-15 • Neck mounted opposed blade damper (galvanized steel)

IS • Insect Screen (1/16" square mesh – galvanized steel)

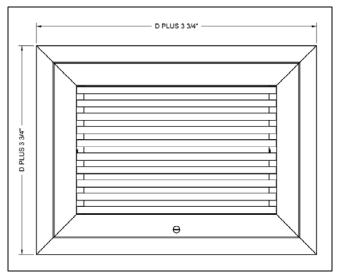
DS • Debris Screen (1/4" square mesh – galvanized steel)

☐ EQT • Earthquake tabs

Other: _____

Standard Finish: #26 White

Optional finish:



Submittal

Louvered Return Filter Grilles • Aluminum • 3/4" Blade Spacing

Models: 350FLF1 • 35° Fixed Deflection • Long Blades • 1" Filter Frame

350FSF1 • 35° Fixed Deflection • Short Blades • 1" Filter Frame 350FLF2 • 35° Fixed Deflection • Long Blades • 2" Filter Frame 350FSF2 • 35° Fixed Deflection • Short Blades • 2" Filter Frame

FASTENER

D PLUS 3 3/4"

1 1/4"

2 5/32" FOR 1" FILTER
3 3/16" FOR 2" FILTER

NOMINAL DUCT SIZE (D)

D PLUS 1/4"

Duct opening should be nominal duct size (D) plus 1/4".

Face View:
Border Type 1 (Surface Mount) & Border Type 3 (Lay-in T-Bar)

Side Cross-Sectional View: Border Type 1 (Surface Mount) & Border Type 3 (Lay-in T-Bar)

Hinge Location Options:	Finish Options:	Fastening Options:
☐ Hinged Top☐ Hinged Left☐ Hinged Right	Standard Finish: #26 White Other Finish:	Quarter-Turn Fastener (standard)
☐ Hinged Bottom☐ No Hinge		Knurled Knob (optional)

Available Sizes: 10" x 8" to 48" x 36" in one-inch increments. Fractional and oversize filter grilles are not available. Maximum size for border type 3 is module size minus 4".

General Description

- Series 350 filter grilles feature louvers spaced 3/4" apart.
- 350 models are available in common filter sizes. 1" thick filters may be purchased from hardware stores for the most common sizes.
- Blade deflection angle is 35°.
- Quarter turn fasteners are standard to make filter access easy.
- Knurled knob fastener available as option
- All dimensions are ± 1/16".

All dimensions are in inches

- Filters by others
- Dimensions are the same for border type 1 (surface mount) and border type 3 (lay-in T-bar)

Note: This submittal is meant to demonstrate general dimensions of this product. The drawings on this submittal are not meant to detail every aspect of the product with exactness. Drawings are not to scale. TITUS reserves the right to make changes without written notice.

PERFORMANCE DATA

350R, 350F AND 350R-SS PERFORMANCE BASED ON NOMINAL SIZES SHOWN IN BOLD.

										NC-20) 		
Nominal Duct Size (in.)	Nominal Duct Area (ft²)	Area	Core Velocity Velocity Pressure Neg. Static Pressure	100 0.001 0.002	200 0.002 0.008	300 0.006 0.018	400 0.010 0.032	500 0.016 0.051	600 0.022 0.073	700 0.031 0.099	800 0.040 0.130	900 0.050 0.164	
6x6	0.25	0.19	Airflow, cfm NC	19 -	38	57 -	76 -	95 -	114 13	133 19	152 25	171 29	
8x6	0.33	0.26	Airflow, cfm NC	26 -	52 -	78 -	104	130	156 15	182 20	208 26	234 30	-NC-30
10x6	0.42	0.34	Airflow, cfm NC	34	68	102	136	170	204 16	238 21	272 28	306 32	
8x8	0.44	0.37	Airflow, cfm NC	37	74	111	148	185	222 16	259 22	296 28	333 32	
12x6	0.5	0.41	Airflow, cfm	41	82	123	164	205	246 17	287	328	369	
14x6	0.58	0.48	NC Airflow, cfm NC	- 48 -	96	144 -	192	240	288 18	336 24	30 384 30	34 432 34	
16x6 12x8	0.67	0.57	Airflow, cfm NC	57 -	114	171	228	285 10	342 19	399 25	456 30	513 35	
10x10	0.69	0.59	Airflow, cfm NC	59 -	118	177 -	236	295 10	354 19	413 25	472 31	531 35	
18x6	0.75	0.63	Airflow, cfm NC	63 -	126	189	252	315 10	378 19	441 25	504 32	567 35	
20x6 12x10	0.83	0.72	Airflow, cfm NC	72 -	144	216	288	360 11	432 19	504 25	576 30	648 35	
22x6	0.92	0.72	Airflow, cfm NC	77	154	231	308	385 11	462 19	539 25	616	693 35	
24x6 12x12	1	0.77	Airflow, cfm NC	88	176	264	352	440 11	528 19	616 25	704 30	792 35	
30x6 18x10	1.25	1.11	Airflow, cfm NC	111	222	333	444	555 12	666	777 26	888 32	999 35	
	1.36	1.22	Airflow, cfm	122	244	366	488	610	732 20	854	976	1098	
36x6			NC Airflow, cfm	135	270	405	540	675	810	945 27	32 1080	35 1215	
18x12	1.5	1.35	NC Airflow, cfm	137	274	411	548	685	822 30	959 27	32 1096	35 1233	
30x8 24x10	1.53	1.37	NC Airflow, cfm NC	149	298	447	596	13 745 14	894 21	27 1043 27	32 1192 33	36 1341 37	
42x6			Airflow, cfm	159	318	477	636	795	954	1113	1272	1431	
18x14 16x16	1.75 1.78	1.59 1.62	NC Airflow, cfm	162	324	486	648	810	972 21	27 1134	33 1296	37 1458	
24x12	2	1.82	NC Airflow, cfm	182	364	546	728	910	21 1092	27 1274	33 1456	37 1638	
18x16 18x18	2.25	2.07	NC Airflow, cfm	207	414	621	828	14	21 1242	28 1449	33 1656	38 1863	
24x14	2.33	2.14	NC Airflow, cfm NC	214	428	642	856	14 1070 14	21 1284 22	28 1498 28	33 1712 33	38 1926 38	
30x12	2.5	2.29	Airflow, cfm NC	229	458	687	916	1145 15	1374 22	1603 28	1832 33	2061 38	
24x16	2.67	2.46	Airflow, cfm NC	246	492	738	984	1230 15	1476 22	1722 29	1968 34	2214 39	
20x20	2.78	2.57	Airflow, cfm NC	257	514	771	1028	1285 16	1542 23	1799 29	2056 34	2313 39	
36x12	3	2.75	Airflow, cfm NC	275	550	825	1100	1375 16	1650 23	1925 29	2200 34	2475 39	
30x16 24x20	3.33	3.11	Airflow, cfm NC	311	622	933	1244	1555 17	1866 24	2177 30	2488 35	2799 40	NC-40
22x22	3.36	3.14	Airflow, cfm NC	314	628	942	1256	1570 17	1884 24	2198 30	2512 35	2826 40	
42x12 36x14	3.5	3.22	Airflow, cfm NC	322	644	966	1288	1610 17	1932 24	2254 30	2576 36	2898 40	
24x22	3.67	3.43	Airflow, cfm NC	343	686	1029	1372	1715 17	2058 24	2401 30	2744 36	3087 40	
30x18	3.75	3.5	Airflow, cfm NC	350	700	1050	1400	1750 17	2100 24	2450 30	2800 36	3150 40	
- UNIO	0.70												

• Static pressures are negative, in inches of water, measured per ANSI/ASHRAE Standard 70-2006.

• NC based on room absorption of 10 dB, re 10⁻¹² watts, measured per ANSI/ASHRAE Standard 70-2006.

Department of **Veterans Affairs**

Memorandum

JAN 4 2012 Date:

Assistant Deputy Under Secretary for Health for Clinical Operations (10NC) From:

Subj: Interim Guidance for Ventilation Requirements in Sterile Processing Service (SPS)

To: VISN Directors, VISN CMOs, VISN QMOs, VISN Nurse Executives, VISN Sterile Processing Boards

- 1. This memorandum extends interim guidance for ventilation requirements in Sterile Processing Services pending the release of a formal directive.
- 2. The following are the minimum number of air exchanges per hour (ACH) based on the functional area and the Design Temperature for existing buildings:
 - a. Soiled / decontamination
 - Airflow = Negative (in) i.
 - Minimum ACH = 6 (Temp 72-78 F) ii.
 - Relative Humidity Range = 20% to 60%
 - b. Sterilizer Equipment Access Room
 - Airflow = Negative (in) i.
 - ii. Minimum ACH = 10 (Temp N/R)
 - Relative Humidity Range = N/R iii.
 - c. Restrooms / Housekeeping
 - Airflow = Negative (in) i.
 - Minimum ACH = 10 (Temp N/R)ii.
 - Relative Humidity Range = N/R iii.
 - d. Preparation, Assembly, Sterilization Area
 - Airflow = Positive (out) i.
 - Minimum ACH = 4 (72 78 F)ii.
 - Relative Humidity Range = 20% to 60% iii.
 - e. Clean / Sterile Storage
 - Airflow = Positive (out) İ.
 - Minimum ACH = 4 (Temp 72 78F) ii.
 - Relative Humidity Range = 20% to 60% iii.
- 3. The following are the minimum number of air exchanges per hour (ACH) based on the functional area and the Design Temperature for new construction and renovations involving replacement of HVAC systems:
 - a. Soiled / decontamination
 - a. Airflow = Negative (in)
 - b. Minimum ACH = 6 (Temp 72 +/- 1F)
 - c. Relative Humidity Range = 20% to 60%

Page 2

Interim Guldance for Ventilation Requirements in Sterile Processing Service (SPS)

- b. Sterilizer Equipment Access Room
 - i. Airflow = Negative (in)
 - ii. Minimum ACH = 10 (Temp N/R)
 - iii. Relative Humidity Range = N/R
- c. Restrooms / Housekeeping
 - Airflow = Negative (in)
 - ii. Minimum ACH = 10 (Temp N/R)
 - iii. Relative Humidity Range = N/R
- d. Preparation, Assembly, Sterilization Area
 - i. Airflow = Positive (out)
 - ii. Minimum ACH = 4 (72 + /- 1F)
 - iii. Relative Humidity Range = 20% to 60%
- e. Clean / Sterile Storage
 - i. Airflow = Positive (out)
 - ii. Minimum ACH = 4 (Temp 72 +/- 1F)
 - iii. Relative Humidity Range = 20% to 60%
- 4. Effective immediately all references in VA Handbook 7176 dealing with ventilation are superseded.
- 5. All new construction and HVAC renovations should comply with the design parameters identified above which meet or exceed those set forth in ANSI/ ASHRAE/ ASHE Standard 170 2008 or the current version, Ventilation of Health Care Facilities and should comply with the VA SPS Design Guide.
- 6. This memorandum remains in effect until December 31, 2012, or until the appropriate directive is published, whichever comes first.
- 7. Point of contact for questions is Tommy Stewart, Acting Director, National Program Office for Sterile Processing, at (202) 461-7139 or Tommy.Stewart@va.gov.

george W. Arana, MD

Table 7-1 CLI	Table 7-1 CLIMATIC CONDITIONS												
		əpnı	noite	Col. 1a 0.4%	1a %	Col. 1b 99.6%	Col. 2a 1%	_	Col. 2b 99%	Col. 3 Wet Bulb	. 3 Bulb	Annual Extreme Daily-Mean Db	Extreme ean Db
	Weather	ited	SVƏl					Temp	Temperatures				
Location	Station	цµ	3 7:	Summer	mer	Winter	Summer		Winter	70	707	Mexima	Minimi
		οN	SW	Db	Wb	Db	Db	Wb	Db	0.4%	1.70	Maximum	MINIMUM
Oklahoma City	Oklahoma City Will Rogers World AP	35.39	1306	99.5	74.1	11.4	8.96	74.1	17.4	7.77	2'92	102.7	6.1
						OREGON							
Portland	Portland Intl AP	45.59	108	91.2	67.5	23.9	87.1	66.5	28.6	69.4	8'.29	0.66	20.5
Roseburg*	Roseburg AP	43	202	93	69	18	06	29	18		-	1	1
White City	Medford Rogue Valley Intl AP	42.39	1329	98.6	67.2	22.9	95.3	6'99	25.7	69.0	9.79	104.2	18.1
					PEN	PENNSYLVANIA							
Altoona	Altoona Blair Co AP	40.30	1470	88.5	72.0	4.7	85.7	7.07	9.6	74.7	73.2	92.5	-2.6
Butler*	Butler Co (AWOS)	40.78	1247	88.0	72.4	3.1	84.4	9.07	8.9	74.6	0.87	91.1	-2.3
Coatesville*	New Castle	14	825	91	22	2	88	44	2	ı	-	•	
Erie	Erie Intl AP	42.08	738	86.4	72.9	5.2	84.0	9.17	9.7	75.3	73.8	91.5	-0.5
Lebanon	Harrisburg Capital City AP	40.22	348	92.4	73.8	8.7	9.68	72.5	13.3	76.5	75.2	8.96 8.3	1.6
Philadelphia	Philadelphia Intl AP	28.68	30	93.2	75.4	12.6	9.06	74.5	16.9	78.3	0'22	0.79	9.9
Pittsburgh	Pittsburgh Intl AP	40.50	1204	89.5	72.5	3.7	9.98	1.17	9.4	75.2	7.87	92.4	-3.0
Wilkes-Barre	Wilkes-Barre Scranton Intl AP	41.34	961	88.9	72.1	3.5	86.0	9.02	8.3	75.0	73.3	93.0	-2.7
					PUI	PUERTO RICO							
San Juan	San Juan Intl AP	18.42	62	91.4	77.4	69.1	89.6	77.8	70.2	80.6	79.9	93.9	8.99

			SPD	CLEA	N - ROC	M DATA	A SHEET	Т					
	INDC	OR TEI	MPERA	TURE		OOR ATIVE	MIN	MIN	ROOM AIR	MAX NOISE	ROOM	INDIV	_
ROOM NAME					HUM	IIDITY	TOTAL	OA	RETURN	LEVEL	AIR	KOOW C	ONTRO
	COO			TING	% RH	% RH	ACH	ACH	EXHAUST (G)	NC	BALANCE	TEMP	FLOW
	F	С	F	С	MAX	MIN			EXHAUST (S)				
						20			5 1 . (0)	40	()	.,	
Non Sterile Storage	72	22	72	22	60	20	4	4	Exhaust (G)	40	(+)	Yes	CV
Note 1 - None													
					T	T		T		I			
PPE	72	22	72	22	60	20	10	10	Exhaust (G)	40	(+)	Yes	CV
Provide a dedicated terminal unit to serve Clea			1en and	d Wome	en. Provid	e transfer	air, as red	quired,	from Sterile/Nor	n Sterile S	Storage. Th	e space ai	r shall
Provide a dedicated terminal unit to serve Clea			1en and	d Wome	en. Provid	e transfer 20	air, as red	quired,	from Sterile/Non Exhaust (G)	Sterile S	Storage. Th	e space ai	r shall CV
Area	nd Wor	nen.										•	
Provide a dedicated terminal unit to serve Clean Infiltrate to the Clean Toilet/Showers - Men ar Preparation, Assembly, and Sterilization	72 cified fo	nen. 22 or this r	72	22 re base	60 d on ASHR	20 AE Standa	4 rd 170 - 2	4 2008. A	Exhaust (G)	40 s may va	(+ +)	Yes the trans	CV fers air
Provide a dedicated terminal unit to serve Clear infiltrate to the Clean Toilet/Showers - Men are Preparation, Assembly, and Sterilization Area Note 1 - Room Air Changes per Hour Minimum (total and outdoor) air changes specific requirements of the adjoining spaces (ETO Stepstorage spaces to maintain positive air balances	72 cified fo	nen. 22 or this r	72	22 re base	60 d on ASHR	20 AE Standa	4 rd 170 - 2	4 2008. A	Exhaust (G)	40 s may va	(+ +)	Yes the trans	CV fers air
Provide a dedicated terminal unit to serve Clear infiltrate to the Clean Toilet/Showers - Men ar Preparation, Assembly, and Sterilization Area Note 1 - Room Air Changes per Hour Minimum (total and outdoor) air changes specific requirements of the adjoining spaces (ETO Sterilization Storage spaces to maintain positive air balance Note 2 - Room Air Balance	72 cified for rilizer I	22 or this r	72 room a and Dec	22 re base contami	60 d on ASHR ination Are	20 AE Standa ea), coolin	4 rd 170 - 2 g load to	4 2008. <i>A</i> meet th	Exhaust (G) Actual air change ne space temper	40 s may va ature, an	(+ +) ry based on d transfer a	Yes the transsir to the c	CV fers air lean
Provide a dedicated terminal unit to serve Clear infiltrate to the Clean Toilet/Showers - Men ar Preparation, Assembly, and Sterilization Area Note 1 - Room Air Changes per Hour Minimum (total and outdoor) air changes specedurements of the adjoining spaces (ETO Stering Sterin	72 cified for rilizer I	22 or this r Room a	72 room a and Dec	22 re base contami	60 d on ASHR ination Are	20 AE Standa ea), cooling ction. Dev	4 rd 170 - 2 g load to vice shall	4 2008. A meet the be installed	Exhaust (G) Actual air change ne space temper alled between Pr	40 s may va ature, an	(+ +) ry based on d transfer a	Yes the transir to the c	CV fers air lean
Provide a dedicated terminal unit to serve Clear infiltrate to the Clean Toilet/Showers - Men ar Preparation, Assembly, and Sterilization Area Note 1 - Room Air Changes per Hour Minimum (total and outdoor) air changes specified requirements of the adjoining spaces (ETO Sterilization storage spaces to maintain positive air balance Note 2 - Room Air Balance Provide simple devices, such as, ball-in-tube of	72 cified for rilizer I	22 or this r Room a	72 room a and Dec	22 re base contami	60 d on ASHR ination Are	20 AE Standa ea), cooling ction. Dev	4 rd 170 - 2 g load to vice shall	4 2008. A meet the be installed	Exhaust (G) Actual air change ne space temper alled between Pr	40 s may va ature, an	(+ +) ry based on d transfer a	Yes the transir to the c	CV fers air lean

			SPD	CLEA	N - ROO	M DAT	A SHEET	Γ					
	INDO	OOR TEI	MPERA	TURE		OOR ATIVE	MIN	MIN	ROOM AIR	MAX NOISE	ROOM	INDIVI ROOM C	_
ROOM NAME					HUM	IDITY	TOTAL	OA	RETURN	LEVEL	AIR	KOOIVI C	ONTROL
	COO	LING	HEA	TING	% RH	% RH	ACH	ACH	EXHAUST (G)	NC	BALANCE	TEMP	FLOW
	F	С	F	С	MAX	MIN			EXHAUST (S)	NC		ILIVIE	FLOW
Satellite SPD Storage	NA	NA	NA	NA	NA	NA	4	2	Return	40	(+)	No	CV

Note 1- Ventilation Air Requirement

Do not provide 100% outdoor air to, or 100% exhaust from, the SPD Storage Room and Warehouses remotely located from the Central SPD Department.

Note 2 - Individual Room Temperature Control

Not required for rooms of 80 to 100 sf [8 to 10 m²]. Required for larger rooms with intermittent occupancy.

Note 3 - Return Air Pick-Up

Return air from rooms under 100 sf [10 m²] is optional.

Note 4 - Room Air Balance

Provide supply air from an adjoining air terminal unit.

						1	_						
Scope Storage Room	NA	NA	NA	NA	NA	NA	4	4	NA	40	(+)	No	CV
Note 1 - Room Air Balance													
Allow room air to ex-filtrate into the Endos	cope Proc	essing/	High Le	evel Dec	ontamina	ition Room	. Mainta	in End	oscope Processin	g/High Le	evel Decont	tamination	Room
under negative air balance and the Scope S	torage Ro	om un	der pos	itive air	balance.								
Staff Breakroom/Conference	75	24	70	21	60	20	6	4	Exhaust (G)	35	(o)	Yes	CV
Note - None													
Sterile Storage	72	22	72	22	60	20	4	4	Exhaust (G)	40	(+)	Yes	CV
Note 1 - None	•	•		•							•	•	•

Improve Emergency Cache - 19

Location	Lebanon, PA
Building owner	
Program user	Miller-Remick LLC
Company	Miller-Remick LLC
Comments	

Heating load methodology

By Dataset name	Miller-Remic C:\Users\mp Projects\BLI	rzybylski\Documents\TRACE 700
Calculation time TRACE® 700 version	05:48 PM on 6.2.9	01/21/2013
Location Latitude Longitude Time Zone Elevation Barometric pressure	Harrisburg, 1 40.0 76.0 5 335 29.5	Pennsylvania deg deg ft in. Hg
Air density Air specific heat Density-specific heat product Latent heat factor Enthalpy factor	0.0751 0.2444 1.1011 4,846.9 4.5046	lb/cu ft Btu/lb·°F Btu/h·cfm·°F Btu·min/h·cu ft lb·min/hr·cu ft
Summer design dry bulb Summer design wet bulb Winter design dry bulb Summer clearness number Winter clearness number Summer ground reflectance Winter ground reflectance Carbon Dioxide Level	92 77 0 1.00 1.00 0.20 0.20 400	°F °F °F
Design simulation period Cooling load methodology	January - De RTS (ASHRA	

UATD

By Miller-Remick

Elevator Machine Room

СО	OLING (COIL PEAK	PEAK CLG SPACE PEAK					HEATING COIL PEAK			
Peaked at Outside	Time: de Air:	Mo/Hi OADB/WB/HR	7 / 4 : 74 / 68 /	92	Mo/Hr: OADB:			Mo/Hr: Heating Design OADB: 0			
Se		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak Tot Sens (Of Total	
l	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)	
Envelope Loads	0	0	•	•		0	Envelope Loads	0	0	0.00	
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00	
Skylite Cond Roof Cond	0	0 0	0	0	0	0	Skylite Cond Roof Cond	0 0	0	0.00	
Glass Solar	0	0	0	0	0	0	Glass Solar	0	0	0.00	
Glass/Door Cond	0	0	0	0	0	0	Glass/Door Cond	0	0	0.00	
Wall Cond	254	126	380	1	254	1	Wall Cond	-751	-1,126	100.00	
Partition/Door	0	120	0	Ó	0	0	Partition/Door	-731	-1,120	0.00	
Floor	0		0	0	0	0	Floor	0	0	0.00	
Adjacent Floor	0	0	0	0	Ö	Ő	Adjacent Floor	ő	Õ	0.00	
Infiltration	Ö	· ·	0	0	0	0	Infiltration	Ö	Ö	0.00	
Sub Total ==>	254	126	380	1	254	1	Sub Total ==>	-751	-1,126	100.00	
Internal Loads							Internal Loads				
Lights	300	75	375	1	300	1	Lights	0	0	0.00	
People	0	0	0	0	0	0	People	Ö	0	0.00	
Misc	30,000	0	30,000	98	30,000	98	Misc	0	0	0.00	
Sub Total ==>	30,300	75	30,375	99	30,300	99	Sub Total ==>	0	0	0.00	
Ceiling Load	4	-4	0	0	4	0	Ceiling Load	-8	0	0.00	
Ventilation Load	0	0	0	0	0	0	Ventilation Load	0	0	0.00	
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0	
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00	
Ov/Undr Sizing	0		0	0	0	0	Exhaust Heat		0	0.00	
Exhaust Heat	-	0	Ö	0		•	OA Preheat Diff.		0	0.00	
Sup. Fan Heat			0	0			RA Preheat Diff.		0	0.00	
Ret. Fan Heat		0	0	0			Additional Reheat		0	0.00	
Duct Heat Pkup		0	0	0			System Plenum Heat		0	0.00	
Underfir Sup Ht Pku	p		0	0			Underfir Sup Ht Pku	p	0	0.00	
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00	
Grand Total ==>	30,559	197	30,756	100.00	30,559	100.00	Grand Total ==>	-760	-1,126	100.00	

TEMPERATURES									
Cooling Heating									
SADB	55.0	70.5							
Ra Plenum	75.1	69.8							
Return	75.1	69.8							
Ret/OA	75.1	69.8							
Fn MtrTD	0.0	0.0							
Fn BldTD	0.0	0.0							
Fn Frict	0.0	0.0							

AIRF	LOWS	
	Cooling	Heating
Diffuser	1,388	1,388
Terminal Main Fan	1,388 1,388	1,388 1,388
Sec Fan	0	0
Nom Vent	0	0
AHU Vent	0	0
Infil	0	0
MinStop/Rh	0	0
Return	1,388	1,388
Exhaust	0	0
Rm Exh	0	0
Auxiliary	0	0
Leakage Dwn	0	0
Leakage Ups	0	0

ENGINEERING CKS									
Cooling Heating									
% OA	0.0	0.0							
cfm/ft ²	12.62	12.62							
cfm/ton	541.42								
ft²/ton	42.92								
Btu/hr-ft ²	279.60	-10.23							
No. People	0								

	COOLING COIL SELECTION										
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm		r DB/ °F	WB/HR gr/lb	Leav e °F		WB/HR gr/lb	
Main Clg Aux Clg	2.6 0.0	30.8 0.0	30.8 0.0	1,388 0	75.1 5 0.0		41.0 0.0	55.0 0.0	48.5 0.0	40.7 0.0	
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	
Total	2.6	30.8									

	AREAS	S		HEAT	ING COIL S		ION	
Gros	s Total	Glas ft ²	s (%)		CapacityCoi MBh	l Airflow cfm	Ent °F	Lvg °F
Floor	110			Main Htg	-1.1	1,388	69.8	70.5
Part	0			Aux Htg	0.0	0	0.0	0.0
Int Door	0			Preheat	0.0	0	0.0	0.0
ExFlr	0							
Roof	0	0	0	Humidif	0.0	0	0.0	0.0
Wall	233	0	0	Opt Vent	0.0	0	0.0	0.0
Ext Door	0	0	0	Total	-1.1			

Improve Emergency Cache - 19 Project Name:

By Miller-Remick

Mechanical Room

COC	OLING (COIL PEAK			CLG SPACI	PEAK	K HEATING COIL PEAK			
Peaked at Outsid		Mo/H OADB/WB/HR	r: 7 / 14 2: 92 / 77 /	115	Mo/Hr: OADB:		Mo/Hr: Heating Design OADB: 0			
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible .			Space Peak Space Sens	Coil Peak Tot Sens (Of Total
Envelope Loads	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Envelope Loads	Btu/h	Btu/h	(%)
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	Õ	Ö	0	0	ŏ	0	Skylite Cond	ő	Ö	0.00
Roof Cond	Ö	Ö	Ö	Ö	Ö	Ő	Roof Cond	Ö	Õ	0.00
Glass Solar	0	0	0	0	0	0	Glass Solar	0	0	0.00
Glass/Door Cond	0	0	0	0	0	0	Glass/Door Cond	0	0	0.00
Wall Cond	0	0	0	0	0	0	Wall Cond	0	0	0.00
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	0	0	0	0	0	0	Sub Total ==>	0	0	0.00
Internal Loads							Internal Loads			
Lights	683	171	853	26	683	45	Lights	0	0	0.00
People	688	0	688	21	344	22	People	0	0	0.00
Misc	427	0	427	13	427	28	Misc	0	0	0.00
Sub Total ==>	1,797	171	1,967	59	1,453	95	Sub Total ==>	0	0	0.00
Ceiling Load	80	-80	0	0	80	5	Ceiling Load	0	0	0.00
Ventilation Load	0	0	1,382	42	0	0	Ventilation Load	0	-1,982	100.00
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	0		0	0	0	0			0	0.00
Exhaust Heat		-28	-28	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat		•	0	0			RA Preheat Diff.		0	0.00
Ret. Fan Heat		0	0	0			Additional Reheat System Plenum Heat		0	0.00
Duct Heat Pkup Underfir Sup Ht Pkup		U	0	0			Underfir Sup Ht Pku		0	0.00
Supply Air Leakage	,	0	0	0			Supply Air Leakage	P	0	0.00
Supply All Leakage		U	U	U			Supply All Leakage		U	0.00
Grand Total ==>	1,877	63	3,322	100.00	1,533	100.00	Grand Total ==>	0	-1,982	100.00

TEMPERATURES								
Cooling Heating								
SADB	55.0	72.0						
Ra Plenum	73.0	72.0						
Return	73.0	72.0						
Ret/OA	78.8	50.0						
Fn MtrTD	0.0	0.0						
Fn BldTD	0.0	0.0						
Fn Frict	0.0	0.0						

AIRF	AIRFLOWS											
	Cooling	Heating										
Diffuser	82	82										
Terminal Main Fan	82 82	82 82										
Sec Fan	0	0										
Nom Vent	25	25										
AHU Vent	25	25										
Infil	0	0										
MinStop/Rh	0	0										
Return	82	82										
Exhaust	25	25										
Rm Exh	0	0										
Auxiliary	0	0										
Leakage Dwn	0	0										
Leakage Ups	0	0										

ENGINEERING CKS								
Cooling Heating								
% OA	30.5	30.5						
cfm/ft ²	0.33	0.33						
cfm/ton	295.79							
ft ² /ton	903.04							
Btu/hr-ft ²	13.29	-7.93						
No. People	1							

	COOLING COIL SELECTION										
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Enter DB, °F °F	WB/HR gr/lb		B/WB/HR °F gr/lb			
Main Clg Aux Clg	0.3 0.0	3.3 0.0	2.1 0.0	82 0	78.8 67.0 0.0 0.0	81.7 0.0	55.0 53 0.0 0				
Opt Vent	0.0	0.0	0.0	0	0.0 0.0	0.0	0.0	.0 0.0			
Total	0.3	3.3									

Gro	AREAS	Glas		HEAT	ING COIL SE CapacityCoil		ION Ent °F	Lvg °F
		ft²	(%)		IVIDII	Cim	. L	
Floor	250			Main Htg	-2.0	82	50.0	72.0
Part	0			Aux Htg	0.0	0	0.0	0.0
Int Door	0			Preheat	-0.5	82	50.0	55.0
ExFlr	0							
Roof	0	0	0	Humidif	0.0	0	0.0	0.0
Wall	0	0	0	Opt Vent	0.0	0	0.0	0.0
Ext Door	0	0	0	Total	-2.0			

Project Name: Improve Emergency Cache - 19

By Miller-Remick

Storage 1 (Clean)

СО	OLING (COIL PEAK			CLG SPAC	E PEAK		HEATING C	OIL PEAK	
Peaked at Outside	Time: de Air:	Mo/F OADB/WB/H	Hr: 7 / 16 R: 92 / 76 /	109	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design	
Se		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak Tot Sens	Of Total
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)
Envelope Loads		•				•	Envelope Loads	•	•	0.00
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond Roof Cond	0	0	4 200	0	0	0	Skylite Cond Roof Cond	0	0	0.00 2.74
Glass Solar	4.763	1,369 0	1,369 4.763	2 8		21	Glass Solar	0	-1,794 0	0.00
Glass/Door Cond	1,121	0	1,121	2	7,131 915	3	Glass/Door Cond	-4.677	-4.677	7.15
Wall Cond	456	212	1,121	1	454	ა 1	Wall Cond	-4,677 -1.505	-4,677 -2.434	3.72
Partition/Door	430	212	000	0	0	0	Partition/Door	-1,505	-2,434	0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adiacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0	O	0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	6,340	1,580	7,920	14	8,500	25	Sub Total ==>	-6,182	-8,905	13.61
Internal Loads							Internal Loads			
Lights	3,304	826	4,130	7	3.304	10	Lights	0	0	0.00
People	3,025	0	3,025	5	1,513	4	People	Ö	0	0.00
Misc	1.877	Ö	1.877	3	1.877	5	Misc	Ō	0	0.00
Sub Total ==>	8,206	826	9,032	16	6,693	20	Sub Total ==>	0	0	0.00
Ceiling Load	2.498	-2.498	0	0	2.772	8	Ceiling Load	-2,704	0	0.00
Ventilation Load	_,	_,	20.662	37	_,,,,_	0	Ventilation Load	0	-29,069	44.44
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizina	_		0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	18,786		18,786	33	16,352	48		•	0	0.00
Exhaust Heat	10,700	0	0	0	10,002		OA Preheat Diff.		0	0.00
Sup. Fan Heat			0	0			RA Preheat Diff.		-27,454	41.97
Ret. Fan Heat		0	0	0			Additional Reheat		.0	0.00
Duct Heat Pkup		0	0	0			System Plenum Heat		18	-0.03
Underfir Sup Ht Pku			0	0			Underfir Sup Ht Pku	p	0	0.00
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	35,830	-92	56,400	100.00	34,317	100.00	Grand Total ==>	-8,886	-65,409	100.00

TEMPERATURES							
Cooling Heating							
SADB	55.0	76.4					
Ra Plenum	79.2	64.2					
Return	72.0	72.0					
Ret/OA	76.0	57.6					
Fn MtrTD	0.0	0.0					
Fn BldTD	0.0	0.0					
Fn Frict	0.0	0.0					

AIRFLOWS								
	Cooling	Heating						
Diffuser	1,833	1,833						
Terminal Main Fan	1,833 1,833	1,833 1,833						
Sec Fan	0	0						
Nom Vent	367	367						
AHU Vent	367	367						
Infil	0	0						
MinStop/Rh	1,833	1,833						
Return	1,833	1,833						
Exhaust	367	367						
Rm Exh	0	0						
Auxiliary	0	0						
Leakage Dwn	0	0						
Leakage Ups	0	0						

ENGINEERING CKS							
Cooling Heating							
% OA	20.0	20.0					
cfm/ft ²	1.67	1.67					
cfm/ton	390.07						
ft ² /ton	234.04						
Btu/hr-ft ²	51.27	-59.46					
No. People	6						

COOLING COIL SELECTION										
	Total Capacity ton MBh				Enter I	DB/WB/HR °F gr/lb		Leave DB/WB/HR °F °F gr/lb		
Main Clg Aux Clg	4.7 0.0	56.4 0.0	42.3 0.0	1,833 0	76.0 63 0.0 0		55.0 0.0		58.3 0.0	
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	
Total	4.7	56.4								

	AREA	S	
Gros	Glas	-	
		ft²	(%)
Floor	1,100		
Part	0		
Int Door	0		
ExFlr	0		
Roof	410	0	0
Wall	626	116	18
Ext Door	0	0	0

HEATING COIL SELECTION CapacityCoil Airflow Ent MBh cfm °F							
Main Htg	-43.2	1,833	55.0	76.4			
Aux Htg	0.0	0	0.0	0.0			
Preheat	-22.2	367	0.0	55.0			
Reheat	-34.3	1,833	55.0	72.0			
Humidif	0.0	0	0.0	0.0			
Opt Vent Total	0.0 -65.4	0	0.0	0.0			

Project Name: Improve Emergency Cache - 19

By Miller-Remick

Storage 2 (Sterile)

COOLING COIL PEAK				CLG SPAC	E PEAK	, L	HEATING C	OIL PEAK		
Peaked at 1 Outside		Mo/Hr OADB/WB/HR	: 7 / 15 : 92 / 76 /	114	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	leating Design)	
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak I Tot Sens (Of Total
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)
Envelope Loads	•	0	•	•		•	Envelope Loads	0	0	0.00
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	•	1,166	1,166	2	_	0	Roof Cond	0	-1,794	3.50
Glass Solar Glass/Door Cond	1,442	0	1,442	3	3,410	12	Glass Solar Glass/Door Cond	•	0	0.00
	551 191	0 97	551 287	1	437	2		-2,235	-2,235	4.35
Wall Cond Partition/Door	191	97	287	1 0	188	0	Wall Cond Partition/Door	-622 0	-1,022	1.99 0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adiacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0	U	0	0	0	0	Infiltration	0	0	0.00
	2.183	4.000	•	7	4.035	14	Sub Total ==>	-2,857	-5,051	9.84
Sub Total ==>	2,183	1,263	3,446	1	4,035	14	Sub rolar ==>	-2,037	-5,051	9.04
Internal Loads							Internal Loads			
Lights	2,703	676	3,379	7	2,703	10	Lights	0	0	0.00
People	2,475	0	2,475	5	1,238	4	People	0	0	0.00
Misc	1,536	0	1,536	3	1,536	5	Misc	0	0	0.00
Sub Total ==>	6,714	676	7,390	16	5,476	20	Sub Total ==>	0	0	0.00
Ceiling Load	1,870	-1,870	0	0	2,268	8	Ceiling Load	-2,213	0	0.00
Ventilation Load	0	0	18,115	38	0	0	Ventilation Load	0	-23,784	46.35
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	18,549	_	18,549	39	16,299	58			0	0.00
Exhaust Heat		0	0	0			OA Preheat Diff.		0	0.00
Sup. Fan Heat		_	0	0			RA Preheat Diff.		-22,462	43.77
Ret. Fan Heat		0	0	0			Additional Reheat		0	0.00
Duct Heat Pkup		0	0	0			System Plenum Heat		-18	0.04
Underfir Sup Ht Pkup)	•	0	0			Underfir Sup Ht Pku	р	0	0.00
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	29,315	69	47,500	100.00	28,078	100.00	Grand Total ==>	-5,069	-51,315	100.00

TEMPERATURES							
Cooling Heating							
SADB	55.0	75.1					
Ra Plenum	78.6	64.2					
Return	72.0	72.0					
Ret/OA	76.1	57.6					
Fn MtrTD	0.0	0.0					
Fn BldTD	0.0	0.0					
Fn Frict	0.0	0.0					

AIRFLOWS								
	Cooling	Heating						
Diffuser	1,500	1,500						
Terminal Main Fan	1,500 1,500	1,500 1,500						
Sec Fan	0	0						
Nom Vent	300	300						
AHU Vent	300	300						
Infil	0	0						
MinStop/Rh	1,500	1,500						
Return	1,500	1,500						
Exhaust	300	300						
Rm Exh	0	0						
Auxiliary	0	0						
Leakage Dwn	0	0						
Leakage Ups	0	0						

ENGINEERING CKS							
Cooling Heating							
% OA	20.0	20.0					
cfm/ft ²	1.67	1.67					
cfm/ton	378.95						
ft²/ton	227.37						
Btu/hr-ft ²	52.78	-57.02					
No. People	5						

COOLING COIL SELECTION									
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Enter °F	DB/WB/HR °F gr/lb	Leave °F		WB/HR gr/lb
Main Clg Aux Clg	4.0 0.0	47.5 0.0	34.9 0.0	1,500 0	76.1 63 0.0 (55.0 0.0	53.2 0.0	58.2 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0
Total	4.0	47.5							

Gros	AREAS ss Total	Glas	s (%)
Floor	900		
Part	0		
Int Door	0		
ExFlr	0		
Roof	410	0	0
Wall	270	55	20
Ext Door	0	0	0

HEAT	ING COIL S CapacityCoil MBh		ION Ent °F	Lvg °F
Main Htg	-33.2	1,500	55.0	75.1
Aux Htg	0.0	0	0.0	0.0
Preheat	-18.2	300	0.0	55.0
Reheat	-28.1	1,500	55.0	72.0
Humidif	0.0	0	0.0	0.0
Opt Vent	0.0	0	0.0	0.0
Total	-51.3		- 1-	,

Project Name: Improve Emergency Cache - 19

By Miller-Remick

Vending Room

coo	LING (COIL PEAK			CLG SPACE	E PEAK	(HEATING C	OIL PEAK	
Peaked at Ti Outside		Mo/Hr: OADB/WB/HR:		115	Mo/Hr: OADB:			Mo/Hr: H OADB: (leating Design	
Sens		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak Tot Sens	Of Total
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)
Envelope Loads	0	0	0	0		^	Envelope Loads	0	0	0.00
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond Roof Cond	0	0 0	0	0	0	0	Skylite Cond Roof Cond	0 0	0	0.00
Glass Solar	0	0	0	0		0	Glass Solar	0	0	0.00
Glass/Door Cond	0	0	0	0		0	Glass/Door Cond	0	0	0.00
Wall Cond	0	0	0	0	0	0	Wall Cond	0	0	0.00
Partition/Door	0	U	0	0	_	0	Partition/Door	0	0	0.00
Floor	0		0	0		0	Floor	0	0	0.00
Adjacent Floor	Ő	0	0	0	ő	0	Adjacent Floor	0	0	0.00
Infiltration	Ö	ŭ	0	Ö	0	0	Infiltration	Ö	0	0.00
Sub Total ==>	0	0	0	0	0	0	Sub Total ==>	0	0	0.00
Internal Loads							Internal Loads			
Lights	314	79	393	7	314	7	Lights	0	0	0.00
People	259	0	259	5	144	3	People	0	0	0.00
Misc	4,215	0	4,215	76	4,215	90	Misc	0	0	0.00
Sub Total ==>	4,788	79	4,866	88	4,673	100	Sub Total ==>	0	0	0.00
Ceiling Load	11	-11	0	0	11	0	Ceiling Load	0	0	0.00
Ventilation Load	0	0	682	12	0	0	Ventilation Load	0	-886	100.01
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	-0.01
Ov/Undr Sizing	0		0	0	0	0	Exhaust Heat		0	0.00
Exhaust Heat		-4	-4	0			OA Preheat Diff.		0	0.00
Sup. Fan Heat			0	0			RA Preheat Diff.		0	0.00
Ret. Fan Heat		0	0	0			Additional Reheat		0	0.00
Duct Heat Pkup		0	0	0			System Plenum Heat		0	0.00
Underfir Sup Ht Pkup			0	0			Underfir Sup Ht Pku	p	0	0.00
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	4,798	64	5,545	100.00	4,683	100.00	Grand Total ==>	0	-886	100.00

TEMPERATURES							
Cooling Heating							
SADB	55.0	70.0					
Ra Plenum	75.3	70.0					
Return	75.3	70.0					
Ret/OA	76.2	66.2					
Fn MtrTD	0.0	0.0					
Fn BldTD	0.0	0.0					
Fn Frict	0.0	0.0					

AIRFLOWS								
	Cooling	Heating						
Diffuser	213	213						
Terminal Main Fan	213 213	213 213						
Sec Fan	0	0						
Nom Vent	12	12						
AHU Vent	12	12						
Infil	0	0						
MinStop/Rh	0	0						
Return	213	213						
Exhaust	12	12						
Rm Exh	0	0						
Auxiliary	0	0						
Leakage Dwn	0	0						
Leakage Ups	0	0						

ENGINEERING CKS						
	Cooling	Heating				
% OA	5.4	5.4				
cfm/ft ²	1.85	1.85				
cfm/ton	460.25					
ft ² /ton	248.88					
Btu/hr-ft ²	48.22	-7.71				
No. People	1					

COOLING COIL SELECTION										
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Enter °F		WB/HR gr/lb	Leav e °F	-	NB/HR gr/lb
Main Clg Aux Clg	0.5 0.0	5.5 0.0	5.0 0.0	213 0	76.2 6 0.0		59.6 0.0	55.0 0.0		55.6 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	0.5	5.5								

AREAS				HEATING COIL SELECTION				
Gros	s Total	Glas ft ²	s (%)		CapacityCoil MBh	Airflow cfm	Ent °F	Lvg °F
Floor	115			Main Htg	-0.9	213	66.2	70.0
Part	0			Aux Htg	0.0	0	0.0	0.0
Int Door	0			Preheat	0.0	0	0.0	0.0
ExFlr	0							
Roof	0	0	0	Humidif	0.0	0	0.0	0.0
Wall	0	0	0	Opt Vent	0.0	0	0.0	0.0
Ext Door	0	0	0	Total	-0.9			

Project Name: Improve Emergency Cache - 19

PROJECT INFORMATION

Location
Building owner
Program user
Company
Comments

By Dataset name	Miller-Remi C:\Users\m _l Projects\BL	orzybylski\Documents\TRACE 700			
Calculation time TRACE® 700 version	06:08 PM on 01/21/2013 6.2.9				
Location Latitude Longitude Time Zone Elevation Barometric pressure	Harrisburg, 40.0 76.0 5 335 29.5	Pennsylvania deg deg ft in. Hg			
Air density Air specific heat Density-specific heat product Latent heat factor Enthalpy factor	0.0751 0.2444 1.1011 4,846.9 4.5046	lb/cu ft Btu/lb·°F Btu/h-cfm-°F Btu-min/h-cu ft lb-min/hr-cu ft			
Summer design dry bulb Summer design wet bulb Winter design dry bulb Summer clearness number Winter clearness number Summer ground reflectance Winter ground reflectance Carbon Dioxide Level	92 77 0 1.00 1.00 0.20 0.20 400	°F °F °F ppm			
Design simulation period Cooling load methodology Heating load methodology	January - D RTS (ASHR UATD				

By Miller-Remick

Bulk Storage Room

cod	DLING (LING COIL PEAK			CLG SPACE PEAK			HEATING COIL PEAK			
Peaked at 1 Outside		Mo/H OADB/WB/HF	lr: 7 / 14 R: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design)		
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak Tot Sens	Of Total	
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)	
Envelope Loads	^	0	0	•		^	Envelope Loads	0	0	0.00	
Skylite Solar	0	0 0	0	0	0	0	Skylite Solar	0	0	0.00	
Skylite Cond Roof Cond	0	0	0	0	0	0	Skylite Cond Roof Cond	0	0	0.00	
Glass Solar	2.747	0	2.747	7	6.764	23	Glass Solar	0	0	0.00	
Glass/Door Cond	1.020	0	1,020	3	-147	23	Glass/Door Cond	-4,955	-4,955	13.23	
Wall Cond	507	428	935	2	384	1	Wall Cond	-1,994	-3,747	10.00	
Partition/Door	0	420	0	0	0	Ó	Partition/Door	0	0,747	0.00	
Floor	Õ		ő	0	0	0	Floor	0	ő	0.00	
Adjacent Floor	0	0	0	0	o o	Ö	Adjacent Floor	0	0	0.00	
Infiltration	Ō	•	Ō	Ō	0	Ō	Infiltration	Ö	0	0.00	
Sub Total ==>	4,275	428	4,703	12	7,002	24	Sub Total ==>	-6,949	-8,701	23.23	
Internal Loads							Internal Loads				
Lights	6.052	1,513	7,565	19	6,052	20	Lights	0	0	0.00	
People	550	0	550	1	275	1	People	Ö	0	0.00	
Misc	3,439	0	3,439	9	3,439	12	Misc	0	0	0.00	
Sub Total ==>	10,041	1,513	11,554	30	9,766	33	Sub Total ==>	0	0	0.00	
Ceiling Load	550	-550	0	0	522	2	Ceiling Load	-383	0	0.00	
Ventilation Load	0	0	5,870	15	0	0	Ventilation Load	0	-7,765	20.73	
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0	
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00	
Ov/Undr Sizing	14,992		14,992	38	12,293	42	Exhaust Heat		67	-0.18	
Exhaust Heat	,	-96	-96	0	,		OA Preheat Diff.		0	0.00	
Sup. Fan Heat			1,990	5			RA Preheat Diff.		-21,544	57.51	
Ret. Fan Heat		0	0	0			Additional Reheat		0	0.00	
Duct Heat Pkup		0	0	0			System Plenum Hear		483	-1.29	
Underfir Sup Ht Pkup)		0	0			Underflr Sup Ht Pku	р	0	0.00	
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00	
Grand Total ==>	29,858	1,295	39,013	100.00	29,583	100.00	Grand Total ==>	-7,332	-37,461	100.00	

TEMPERATURES								
Cooling Heating								
SADB	55.0	75.0						
Ra Plenum	75.9	69.4						
Return	75.9	69.4						
Ret/OA	77.1	64.2						
Fn MtrTD	0.1	0.0						
Fn BldTD	0.3	0.0						
Fn Frict	0.9	0.0						

ΔIRE	Lows	
AllXI		
	Cooling	Heating
Diffuser	1,343	1,343
Terminal	1,343	1,343
Main Fan	1,343	1,343
Sec Fan	0	0
Nom Vent	101	101
AHU Vent	101	101
Infil	0	0
MinStop/Rh	1,343	1,343
Return	1,343	1,343
Exhaust	101	101
Rm Exh	0	0
Auxiliary	0	0
Leakage Dwn	0	0
Leakage Ups	0	0

ENGINEERING CKS								
	Cooling Heating							
% OA	7.5	7.5						
cfm/ft ²	0.67	0.67						
cfm/ton	413.20							
ft²/ton	619.79							
Btu/hr-ft ²	19.36	-18.59						
No. People	1							

	COOLING COIL SELECTION									
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm		r DB/ °F	WB/HR gr/lb	Leav °F		WB/HR gr/lb
Main Clg Aux Clg	3.3 0.0	39.0 0.0	34.7 0.0	1,343 0	77.1 (0.0		62.3 0.0	53.7 0.0	-	57.5 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	3.3	39.0								

	AREA	S	
Gros	Glas	-	
		ft²	(%)
Floor	2,015		
Part	0		
Int Door	0		
ExFlr	0		
Roof	0	0	0
Wall	1,020	126	12
Ext Door	0	0	0

HEAT	ING COIL S CapacityCoi MBh		ION Ent °F	Lvg °F
Main Htg	-31.5	1,343	53.7	75.0
Aux Htg	0.0	0	0.0	0.0
Preheat	-6.0	101	0.0	53.7
Reheat	-24.2	1,343	53.7	70.0
Humidif	0.0	0	0.0	0.0
Opt Vent	0.0	0	0.0	0.0
Total	-37.5			

Project Name:

By Miller-Remick

Electrical Storage Room

COOLING COIL PEAK			CLG SPACE PEAK HEATIN			HEATING CO	NG COIL PEAK			
Peaked at 1 Outside		Mo/H OADB/WB/HF	r: 7 / 14 R: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design	
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak I	Of Total
Favolene Leede	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Farrelens I seds	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Envelope Loads Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00
Glass Solar	0	0	0	0	0	0	Glass Solar	0	0	0.00
Glass/Door Cond	0	0	0	0	0	0	Glass/Door Cond	0	0	0.00
Wall Cond	0	0	0	0	0	0	Wall Cond	0	0	0.00
Partition/Door	Õ	Ü	Ö	ő	Ö	0	Partition/Door	Õ	Õ	0.00
Floor	Ō		Ō	Ō	0	Ö	Floor	Ö	Ō	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	0	0	0	0	0	0	Sub Total ==>	0	0	0.00
Internal Loads							Internal Loads			
Lights	1,682	420	2,102	19	1,682	20	Lights	0	0	0.00
People	550	0	550	5	275	3	People	0	0	0.00
Misc	956	0	956	9	956	12	Misc	0	0	0.00
Sub Total ==>	3,188	420	3,608	33	2,913	35	Sub Total ==>	0	0	0.00
Ceiling Load	153	-153	0	0	161	2	Ceiling Load	-106	0	0.00
Ventilation Load	0	0	1,631	15	0	0	Ventilation Load	0	-2,158	25.45
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	5,156		5,156	47	5,148	63	Exhaust Heat		18	-0.22
Exhaust Heat		-27	-27	0			OA Preheat Diff.		0	0.00
Sup. Fan Heat			553	5			RA Preheat Diff.		-5,987	70.61
Ret. Fan Heat		0	0	0			Additional Reheat		0 -353	0.00 4.16
Duct Heat Pkup		0	0	0			System Plenum Hear			- 1
Underfir Sup Ht Pkup	,	0	0	0			Underfir Sup Ht Pku	þ	0	0.00
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	8,496	241	10,922	100.00	8,222	100.00	Grand Total ==>	-106	-8,480	100.00

TEMPERATURES								
Cooling Heating								
SADB	55.0	70.3						
Ra Plenum	75.9	69.4						
Return	75.9	69.4						
Ret/OA	77.1	64.2						
Fn MtrTD	0.1	0.0						
Fn BldTD	0.3	0.0						
Fn Frict	0.9	0.0						

AIRFLOWS									
	Cooling	Heating							
Diffuser	373	373							
Terminal Main Fan	373 373	373 373							
Sec Fan	0	0							
Nom Vent	28	28							
AHU Vent	28	28							
Infil	0	0							
MinStop/Rh	373	373							
Return	373	373							
Exhaust	28	28							
Rm Exh	0	0							
Auxiliary	0	0							
Leakage Dwn	0	0							
Leakage Ups	0	0							

ENGINEERING CKS								
Cooling Heating								
% OA	7.5	7.5						
cfm/ft ²	0.67	0.67						
cfm/ton	410.18							
ft ² /ton	615.27							
Btu/hr-ft ²	19.50	-15.14						
No. People	1							

	Total C	apacity MBh		G COIL SELE Coil Airflow cfm	Ente		WB/HR gr/lb	Leav e		WB/HR gr/lb
Main Clg Aux Clg	0.9 0.0	10.9 0.0	9.5 0.0	373 0	77.1 0.0	62.5 0.0	62.3 0.0	53.7 0.0		57.2 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	0.9	10.9								

	AREAS	3	
Gros	s Total	Glas	_
		ft²	(%)
Floor	560		
Part	0		
Int Door	0		
ExFlr	0		
Roof	0	0	0
Wall	0	0	0
Ext Door	0	0	0

HEATING COIL SELECTION								
	CapacityCoil	Airflow	Ent	Lvg				
	MBh	cfm	°F	°F				
Main Htg	-6.8	373	53.7	70.3				
Aux Htg	0.0	0	0.0	0.0				
Preheat	-1.7	28	0.0	53.7				
Reheat	-6.7	373	53.7	70.0				
Humidif	0.0	0	0.0	0.0				
Opt Vent	0.0	0		0.0				
Total	-8.5							

Project Name:

By Miller-Remick

Office 01

CC	OLING (COIL PEAK			CLG SPAC	E PEAK	<u>,</u>	HEATING C	OIL PEAK	
Peaked a Outs	t Time: ide Air:	Mo/H OADB/WB/HF	Ir: 7 / 14 R: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: (leating Design)	
Se		Plenum Sens. + Lat	Total	Percent Of Total	Sensible .			Space Peak Space Sens	Coil Peak Tot Sens	Of Total
Envelope Loads	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Envelope Loads	Btu/h	Btu/h	(%)
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00
Glass Solar	343	0	343	6	910	41	Glass Solar	0	0	0.00
Glass/Door Cond	142	0	142	3	26	1	Glass/Door Cond	-688	-688	12.16
Wall Cond	89	72	161	3	85	4	Wall Cond	-347	-639	11.30
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00
Floor	0	0	0	0	0	0	Floor	0	0	0.00
Adjacent Floor Infiltration	0	0	0	0	0	0	Adjacent Floor Infiltration	0	0	0.00 0.00
	-	72	-	12	_	_	Sub Total ==>	-1.035	-1,327	23.46
Sub Total ==>	573	12	645	12	1,021	46	Sub Total ==>	-1,035	-1,327	23.40
Internal Loads							Internal Loads			
Lights	436	109	544	10	436	19	Lights	0	0	0.00
People	450	0	450	8	250	11	People	0	0	0.00
Misc	495	0	495	9	495	22	Misc	0	0	0.00
Sub Total ==>	1,380	109	1,489	28	1,180	53	Sub Total ==>	0	0	0.00
Ceiling Load	40	-40	0	0	39	2		-28	0	0.00
Ventilation Load	0	0	2,816	52	0	0	Ventilation Load	0	-3,725	65.84
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing	3		0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	336		336	6	0	0			32	-0.56
Exhaust Heat		-46	-46	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat		_	143	3			RA Preheat Diff.		-838	14.81
Ret. Fan Heat		0	0	0			Additional Reheat		0 201	0.00 -3.55
Duct Heat Pkup		0	0	0			System Plenum Hea		_	0.00
Underfir Sup Ht Pki		0	0	0			Underfir Sup Ht Pku	h	0	
Supply Air Leakage	;	0	U	U			Supply Air Leakage		0	0.00
Grand Total ==>	2,329	95	5,383	100.00	2,241	100.00	Grand Total ==>	-1,063	-5,658	100.00

TEMPERATURES								
Cooling Heating								
SADB	55.0	80.0						
Ra Plenum	75.9	69.4						
Return	75.9	69.4						
Ret/OA	83.9	34.7						
Fn MtrTD	0.1	0.0						
Fn BldTD	0.3	0.0						
Fn Frict	0.9	0.0						

AIRFLOWS							
	Cooling	Heating					
Diffuser	102	97					
Terminal Main Fan	102 102	97 97					
Sec Fan	0	0					
Nom Vent	48	48					
AHU Vent	48	48					
Infil	0	0					
MinStop/Rh	97	97					
Return	102	97					
Exhaust	48	48					
Rm Exh	0	0					
Auxiliary	0	0					
Leakage Dwn	0	0					
Leakage Ups	0	0					

ENGINEERING CKS							
Cooling Heating							
% OA	47.5	50.0					
cfm/ft ²	0.70	0.67					
cfm/ton	226.81						
ft²/ton	323.22						
Btu/hr-ft2	37.13	-39.02					
No. People	1						

COOLING COIL SELECTION										
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm		r DB/ °F	WB/HR gr/lb	Leav e °F		WB/HR gr/lb
Main Clg Aux Clg	0.5 0.0	5.4 0.0	3.3 0.0	97 0	83.9		86.6 0.0	53.7 0.0	-	54.7 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	0.5	5.4								

	AREAS	S		
Gros	s Total	Glas		
		ft²	(%)	
Floor	145			ı
Part	0			1
Int Door	0			ı
ExFlr	0			
Roof	0	0	0	
Wall	170	18	10	(
Ext Door	0	0	0	

HEATING COIL SELECTION								
	CapacityCoil A	Airflow	Ent	Lvg				
	MBh	cfm	°F	°F				
Main Htg	-2.8	97	53.7	80.0				
Aux Htg	0.0	0	0.0	0.0				
Preheat	-2.9	48	0.0	53.7				
Reheat	-1.7	97	53.7	70.0				
Humidif	0.0	0	0.0	0.0				
Opt Vent	0.0	0		0.0				
Total	-5.7							

Project Name:

By Miller-Remick

Office 02

coc	DLING (COIL PEAK			CLG SPAC	E PEAK	, L	HEATING C	OIL PEAK	
Peaked at T Outside		Mo/H OADB/WB/HF	r: 7 / 14 R: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design)	
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak I	Of Total
Fundame Leads	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Fundame Leeds	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Envelope Loads Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00
Glass Solar	328	0	328	7	883	41	Glass Solar	0	0	0.00
Glass/Door Cond	142	Õ	142	3	26	1	Glass/Door Cond	-688	-688	12.84
Wall Cond	95	76	172	3	91	4	Wall Cond	-368	-675	12.59
Partition/Door	0		0	Õ	0	0	Partition/Door	0	0	0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	565	76	642	13	1,000	46	Sub Total ==>	-1,056	-1,363	25.43
Internal Loads							Internal Loads			
Lights	405	101	507	10	405	19	Lights	0	0	0.00
People	450	0	450	9	250	12	People	0	0	0.00
Misc	461	0	461	9	461	21	Misc	0	0	0.00
Sub Total ==>	1,316	101	1,418	28	1,116	52	Sub Total ==>	0	0	0.00
Ceiling Load	37	-37	0	0	36	2	Ceiling Load	-26	0	0.00
Ventilation Load	0	0	2,622	52	0	0	Ventilation Load	0	-3,468	64.71
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	264		264	5	0	0	Exhaust Heat		30	-0.55
Exhaust Heat		-43	-43	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat		0	133	3			RA Preheat Diff.		-780	14.55
Ret. Fan Heat		0 0	0	0			Additional Reheat System Plenum Hea	•	0 222	0.00 -4.13
Duct Heat Pkup Underfir Sup Ht Pkup		U	0	0			Underfir Sup Ht Pku		0	0.00
Supply Air Leakage	1	0	0	0			Supply Air Leakage	ıμ	0	0.00
Grand Total ==>	2,182	98	5,035	100.00	2,153	100.00	Grand Total ==>	-1,082	-5,360	100.00

TEMPERATURES								
Cooling Heating								
SADB	55.0	80.9						
Ra Plenum	75.9	69.4						
Return	75.9	69.4						
Ret/OA	83.9	34.7						
Fn MtrTD	0.1	0.0						
Fn BldTD	0.3	0.0						
Fn Frict	0.9	0.0						

AIRFLOWS							
	Cooling	Heating					
Diffuser	98	90					
Terminal Main Fan	98 98	90 90					
Sec Fan	0	0					
Nom Vent	45	45					
AHU Vent	45	45					
Infil	0	0					
MinStop/Rh	90	90					
Return	98	90					
Exhaust	45	45					
Rm Exh	0	0					
Auxiliary	0	0					
Leakage Dwn	0	0					
Leakage Ups	0	0					

ENGINEERING CKS									
Cooling Heating									
% OA	46.0	50.0							
cfm/ft ²	0.72	0.67							
cfm/ton	232.96								
ft²/ton	321.73								
Btu/hr-ft2	37.30	-39.71							
No. People	1								

	COOLING COIL SELECTION											
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Enter DB, °F °F	/WB/HR gr/lb	Leave DB/ °F °F	WB/HR gr/lb				
Main Clg Aux Clg	0.4 0.0	5.0 0.0	3.1 0.0	90 0	83.9 69.5 0.0 0.0	86.6 0.0	53.7 51.6 0.0 0.0	54.3 0.0				
Opt Vent	0.0	0.0	0.0	0	0.0 0.0	0.0	0.0 0.0	0.0				
Total	0.4	5.0										

Gro	AREAS ss Total	S Glas ft²	s (%)	HE
Floor	135			Main Htg
Part	0			Aux Htg
Int Door	0			Preheat
ExFlr	0			Reheat
Roof	0	0	0	Humidif
Wall	179	18	10	Opt Ven
Ext Door	0	0	0	Total

HEAT	ING COIL S CapacityCoil MBh		TON Ent °F	Lvg °F
Main Htg	-2.7	90	53.7	80.9
Aux Htg	0.0	0	0.0	0.0
Preheat	-2.7	45	0.0	53.7
Reheat	-1.6	90	53.7	70.0
Humidif	0.0	0	0.0	0.0
Opt Vent	0.0	0	0.0	0.0
Total	-5.4			

Project Name:

By Miller-Remick

Office 03

coc	LING (COIL PEAK			CLG SPAC	E PEAK	, L	HEATING C	OIL PEAK	
Peaked at T Outside		Mo/H OADB/WB/HR	r: 7/9 R: 79/71/	100	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design)	
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak I Tot Sens (Of Total
Fl.	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	F	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Envelope Loads Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00
Glass Solar	883	0	883	21	883	42	Glass Solar	0	0	0.00
Glass/Door Cond	26	0	26	1	26	1	Glass/Door Cond	-688	-688	13.65
Wall Cond	91	73	164	4	91	4	Wall Cond	-368	-675	13.38
Partition/Door	0	. •	0	0	0	0	Partition/Door	0	0	0.00
Floor	Ō		Ō	Ō	0	Ō	Floor	Ō	Ō	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	1,000	73	1,073	26	1,000	48	Sub Total ==>	-1,056	-1,363	27.03
Internal Loads							Internal Loads			
Lights	375	94	469	11	375	18	Lights	0	0	0.00
People	450	0	450	11	250	12	People	0	0	0.00
Misc	427	0	427	10	427	20	Misc	0	0	0.00
Sub Total ==>	1,252	94	1,346	33	1,052	50	Sub Total ==>	0	0	0.00
Ceiling Load	34	-34	0	0	34	2	Ceiling Load	-24	0	0.00
Ventilation Load	0	0	1,420	34	0	0	Ventilation Load	0	-3,212	63.70
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	184		184	4	0	0	Exhaust Heat		28	-0.55
Exhaust Heat		-39	-39	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat			140	3			RA Preheat Diff.		-722	14.33
Ret. Fan Heat		0	0	0			Additional Reheat System Plenum Hea	•	0 228	0.00 -4.52
Duct Heat Pkup		0	0	0			•		0	0.00
Underfir Sup Ht Pkup Supply Air Leakage		0	0	0			Underfir Sup Ht Pku Supply Air Leakage	ıh	0	0.00
	0.470		_	_	0.000	400.00		4.000	· ·	
Grand Total ==>	2,470	94	4,124	100.00	2,086	100.00	Grand Total ==>	-1,080	-5,042	100.00

TEMPERATURES									
Cooling Heating									
SADB	55.0	81.8							
Ra Plenum	75.9	69.4							
Return	75.9	69.4							
Ret/OA	77.5	34.7							
Fn MtrTD	0.1	0.0							
Fn BldTD	0.3	0.0							
Fn Frict	0.9	0.0							

AIRFLOWS									
	Cooling	Heating							
Diffuser	95	83							
Terminal Main Fan	95 95	83 83							
Sec Fan	0	0							
Nom Vent	42	42							
AHU Vent	42	42							
Infil	0	0							
MinStop/Rh	83	83							
Return	95	83							
Exhaust	42	42							
Rm Exh	0	0							
Auxiliary	0	0							
Leakage Dwn	0	0							
Leakage Ups	0	0							

ENGINEERING CKS									
	Cooling Heating								
% OA	44.0	50.0							
cfm/ft ²	0.76	0.67							
cfm/ton	275.62								
ft²/ton	363.75								
Btu/hr-ft ²	32.99	-40.33							
No. People	1								

	COOLING COIL SELECTION											
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Enter °F	DB/WB/ l °F gr		ave F	-	VB/HR gr/lb		
Main Clg	0.3	4.1	2.7	95	77.5 6	5.5 76	5.5 53	.7	50.9	51.7		
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	.0	0.0	0.0		
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	.0	0.0	0.0		
Total	0.3	4.1										

	ARE	AS		HE
Gro	ss Total	Gla ft ²		
Floor Part	125 0		` ,	Main Htg
Int Door ExFIr	0			Preheat Reheat
Roof Wall	0 179	0 18	0 10	Humidif Opt Ven
Ext Door	0	0	0	Total

HEAT	ING COIL S CapacityCoil MBh		TON Ent °F	Lvg °F
Main Htg	-2.6	83	53.7	81.8
Aux Htg	0.0	0	0.0	0.0
Preheat	-2.5	42	0.0	53.7
Reheat	-1.5	83	53.7	70.0
Humidif	0.0	0	0.0	0.0
Opt Vent	0.0	0	0.0	0.0
Total	-5.0			

Project Name:

By Miller-Remick

Office 04

cod	DLING (COIL PEAK			CLG SPAC	E PEAK	, L	HEATING C	OIL PEAK	
Peaked at 7 Outside		Mo/H OADB/WB/HF	r: 7 / 14 R: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design)	
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak I Tot Sens (Of Total
F	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	F	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Envelope Loads Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00
Glass Solar	328	0	328	7	883	42	Glass Solar	0	0	0.00
Glass/Door Cond	142	Ŏ	142	3	26	1	Glass/Door Cond	-688	-688	13.23
Wall Cond	95	76	172	4	91	4	Wall Cond	-368	-675	12.97
Partition/Door	0	. •	0	0	0	0	Partition/Door	0	0	0.00
Floor	Ō		Ō	Ō	0	Ō	Floor	Ō	Ō	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	565	76	642	13	1,000	47	Sub Total ==>	-1,056	-1,363	26.21
Internal Loads							Internal Loads			
Lights	390	98	488	10	390	18	Lights	0	0	0.00
People	450	0	450	9	250	12	People	0	0	0.00
Misc	444	0	444	9	444	21	Misc	0	0	0.00
Sub Total ==>	1,284	98	1,382	28	1,084	51	Sub Total ==>	0	0	0.00
Ceiling Load	36	-36	0	0	35	2	Ceiling Load	-25	0	0.00
Ventilation Load	0	0	2,525	52	0	0	Ventilation Load	0	-3,340	64.22
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	224		224	5	0	0	Exhaust Heat		29	-0.55
Exhaust Heat		-41	-41	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat			128	3			RA Preheat Diff.		-751	14.45
Ret. Fan Heat		0	0	0			Additional Reheat		0 225	0.00 -4.32
Duct Heat Pkup		0	0	0			System Plenum Hea		_	0.00
Underfir Sup Ht Pkup)	0	0	0			Underfir Sup Ht Pku	h	0	
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	2,109	97	4,859	100.00	2,119	100.00	Grand Total ==>	-1,081	-5,201	100.00

TEMPERATURES								
Cooling Heating								
SADB	55.0	81.3						
Ra Plenum	75.9	69.4						
Return	75.9	69.4						
Ret/OA	83.9	34.7						
Fn MtrTD	0.1	0.0						
Fn BldTD	0.3	0.0						
Fn Frict	0.9	0.0						

AIRFLOWS								
	Cooling	Heating						
Diffuser	96	87						
Terminal Main Fan	96 96	87 87						
Sec Fan	0	0						
Nom Vent	43	43						
AHU Vent	43	43						
Infil	0	0						
MinStop/Rh	87	87						
Return	96	87						
Exhaust	43	43						
Rm Exh	0	0						
Auxiliary	0	0						
Leakage Dwn	0	0						
Leakage Ups	0	0						

ENGINEERING CKS								
Cooling Heating								
% OA	45.0	50.0						
cfm/ft ²	0.74	0.67						
cfm/ton	237.66							
ft ² /ton	321.05							
Btu/hr-ft ²	37.38	-40.01						
No. People	1							

COOLING COIL SELECTION										
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm		r DB/ °F	WB/HR gr/lb	Leav °F		WB/HR gr/lb
Main Clg Aux Clg	0.4 0.0	4.9 0.0	2.9 0.0	87 0	83.9 0.0		86.6 0.0	53.7 0.0	51.5 0.0	54.2 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	0.4	4.9								

AREAS							
Gros	Glas	-					
		ft²	(%)				
Floor	130						
Part	0						
Int Door	0						
ExFlr	0						
Roof	0	0	0				
Wall	179	18	10				
Ext Door	0	0	0				

HEATING COIL SELECTION									
	CapacityCoil	Airflow	Ent	Lvg					
	MBh	cfm	°F	°F					
Main Htg	-2.6	87	53.7	81.3					
Aux Htg	0.0	0	0.0	0.0					
Preheat	-2.6	43	0.0	53.7					
Reheat	-1.6	87	53.7	70.0					
Humidif	0.0	0	0.0	0.0					
Opt Vent	0.0	0		0.0					
Total	-5.2								

Project Name:

By Miller-Remick

Office 05

CC	OOLING (COIL PEAK			CLG SPAC	E PEAK	, L	HEATING CO	OIL PEAK	
Peaked a Outs	it Time: ide Air:	Mo/Hi OADB/WB/HR	7/14 : 92/77/	115	Mo/Hr: OADB:			Mo/Hr: Ho OADB: 0	eating Design	
Se		Plenum Sens. + Lat	Total	Percent Of Total	Sensible .			Space Peak Space Sens	Coil Peak I	Of Total
Envelope Leads	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Envelope Loads	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00
Glass Solar	0	Ö	0	0	ő	0	Glass Solar	0	Ő	0.00
Glass/Door Cond	0	Õ	0	Ö	ő	0	Glass/Door Cond	0	Ő	0.00
Wall Cond	0	Õ	0	Ö	ŏ	0	Wall Cond	0	Ő	0.00
Partition/Door	0	· ·	Ö	Ö	Ö	Õ	Partition/Door	Ö	Ö	0.00
Floor	Ō		Ō	Ö	0	Ō	Floor	Ö	Ö	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	0	0	0	0	0	0	Sub Total ==>	0	0	0.00
Internal Loads							Internal Loads			
Lights	345	86	432	10	345	20	Lights	0	0	0.00
People	450	0	450	11	250	15	People	0	0	0.00
Misc	393	0	393	9	393	23	Misc	0	0	0.00
Sub Total ==>	1,188	86	1,274	30	988	59	Sub Total ==>	0	0	0.00
Ceiling Load	31	-31	0	0	33	2	Ceiling Load	-22	0	0.00
Ventilation Load	0	0	2,233	53	0	0	Ventilation Load	0	-2,955	80.59
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing	g		0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	669		669	16	667	40			25	-0.69
Exhaust Heat		-36	-36	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat		_	114	3			RA Preheat Diff.		-665	18.13
Ret. Fan Heat		0	0	0			Additional Reheat		0 -72	0.00 1.98
Duct Heat Pkup		0	0	0			System Plenum Hear			0.00
Underfir Sup Ht Pki Supply Air Leakage		0	0	0			Underfir Sup Ht Pku Supply Air Leakage	þ	0	0.00
Supply All Leakage	7	U	U	U			Supply All Leakage		U	0.00
Grand Total ==>	1,888	19	4,254	100.00	1,688	100.00	Grand Total ==>	-22	-3,666	100.00

TEMPERATURES								
Cooling Heating								
SADB	55.0	70.3						
Ra Plenum	75.9	69.4						
Return	75.9	69.4						
Ret/OA	83.9	34.7						
Fn MtrTD	0.1	0.0						
Fn BldTD	0.3	0.0						
Fn Frict	0.9	0.0						

AIRFLOWS								
	Cooling	Heating						
Diffuser	77	77						
Terminal Main Fan	77 77	77 77						
Sec Fan	0	0						
Nom Vent	38	38						
AHU Vent	38	38						
Infil	0	0						
MinStop/Rh	77	77						
Return	77	77						
Exhaust	38	38						
Rm Exh	0	0						
Auxiliary	0	0						
Leakage Dwn	0	0						
Leakage Ups	0	0						

ENGINEERING CKS							
Cooling Heating							
% OA	50.0	50.0					
cfm/ft ²	0.67	0.67					
cfm/ton	216.27						
ft²/ton	324.40						
Btu/hr-ft2	36.99	-31.88					
No. People	1						

COOLING COIL SELECTION										
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm		r DB /	WB/HR gr/lb		°F	NB/HR gr/lb
Main Clg Aux Clg	0.4 0.0	4.3 0.0	2.5 0.0	77 0	83.9 6 0.0		86.6 0.0	53.7 0.0		55.0 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	0.4	4.3								

	AREA	HEATING		
Gro	ss Total	Glass ft ²	; (%)	Ca
Floor	115			Main Htg
Part	0			Aux Htg
Int Door	0			Preheat
ExFlr	0			Reheat
Roof	0	0	0	Humidif
Wall	0	0	0	Opt Vent
Ext Door	0	0	0	Total

HEATING COIL SELECTION						
	CapacityCoil A	Airflow	Ent	Lvg		
	MBh	cfm	°F	°F		
Main Htg	-1.4	77	53.7	70.3		
Aux Htg	0.0	0	0.0	0.0		
Preheat	-2.3	38	0.0	53.7		
Reheat	-1.4	77	53.7	70.0		
Humidif	0.0	0	0.0	0.0		
Opt Vent	0.0	0		0.0		
Total	-3.7					

Project Name:

By Miller-Remick

Office 06 - Cubicle Area

C	OOLING (COIL PEAK			CLG SPACI	E PEAK	, 1	HEATING CO	OIL PEAK	
Peaked a Outs	at Time: side Air:	Mo/F OADB/WB/HI	lr: 7 / 14 R: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design	
s		Plenum Sens. + Lat	Total	Percent Of Total	Sensible .			Space Peak Space Sens	Coil Peak Tot Sens	Of Total
Favolene Leede	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Farrelens I seds	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Envelope Loads Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	Ő	0	0	Ö	0	Roof Cond	0	0	0.00
Glass Solar	Ö	Ö	Ö	Ö	Ö	Ŏ	Glass Solar	Ö	Ö	0.00
Glass/Door Cond	0	Ö	Ō	Ö	0	Ō	Glass/Door Cond	Ö	0	0.00
Wall Cond	0	0	0	0	0	0	Wall Cond	0	0	0.00
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	0	0	0	0	0	0	Sub Total ==>	0	0	0.00
Internal Loads							Internal Loads			
Lights	3,724	931	4,655	10	3,724	20	Lights	0	0	0.00
People	3,600	0	3,600	8	2,000	11	People	0	0	0.00
Misc	4,232	0	4,232	9	4,232	23	Misc	0	0	0.00
Sub Total ==>	11,556	931	12,487	28	9,956	55	Sub Total ==>	0	0	0.00
Ceiling Load	339	-339	0	0	357	2	Ceiling Load	-236	0	0.00
Ventilation Load	0	0	24,082	53	0	0	Ventilation Load	0	-31,858	80.59
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizin	g		0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	7,910		7,910	17	7,891	43	Exhaust Heat		273	-0.69
Exhaust Heat		-392	-392	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat		_	1,225	3			RA Preheat Diff.		-7,166	18.13
Ret. Fan Heat		0	0	0			Additional Reheat		0 -781	0.00 1.98
Duct Heat Pkup		0	0	0			System Plenum Hear		_	
Underfir Sup Ht Pk	•	0	0	0			Underfir Sup Ht Pku	p	0	0.00
Supply Air Leakage	е	0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	19,805	200	45,312	100.00	18,205	100.00	Grand Total ==>	-236	-39,533	100.00

TEMPERATURES						
Cooling Heating						
SADB	55.0	70.3				
Ra Plenum	75.9	69.4				
Return	75.9	69.4				
Ret/OA	83.9	34.7				
Fn MtrTD	0.1	0.0				
Fn BldTD	0.3	0.0				
Fn Frict	0.9	0.0				

AIRFLOWS							
	Cooling	Heating					
Diffuser	827	827					
Terminal Main Fan	827 827	827 827					
Sec Fan	0	0					
Nom Vent	413	413					
AHU Vent	413	413					
Infil	0	0					
MinStop/Rh	827	827					
Return	827	827					
Exhaust	413	413					
Rm Exh	0	0					
Auxiliary	0	0					
Leakage Dwn	0	0					
Leakage Ups	0	0					

ENGINEERING CKS					
Cooling Heating					
% OA	50.0	50.0			
cfm/ft ²	0.67	0.67			
cfm/ton	218.93				
ft ² /ton	328.39				
Btu/hr-ft ²	36.54	-31.88			
No. People	8				
_					

COOLING COIL SELECTION										
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Ente °F	-	WB/HR gr/lb	Leav e °F	-	WB/HR gr/lb
Main Clg Aux Clg	3.8 0.0	45.3 0.0	27.3 0.0	827 0	83.9 0.0		86.6 0.0	53.7 0.0	52.0 0.0	56.0 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	3.8	45.3								

	AREA	S	
Gros	Glas	-	
		ft²	(%)
Floor	1,240		
Part	0		
Int Door	0		
ExFlr	0		
Roof	0	0	0
Wall	0	0	0
Ext Door	0	0	0

HEAT	TING COIL SI CapacityCoil MBh		ION Ent °F	Lvg °F
Main Htg	-15.1	827	53.7	70.3
Aux Htg	0.0	0	0.0	0.0
Preheat	-24.4	413	0.0	53.7
Reheat	-14.9	827	53.7	70.0
Humidif	0.0	0	0.0	0.0
Opt Vent	0.0	0	0.0	0.0
Total	-39.5			

Project Name:

By Miller-Remick

Office 07

С	OOLING (COIL PEAK			CLG SPAC	E PEAK	, L	HEATING C	OIL PEAK	
Peaked Out	at Time: side Air:	Mo/H OADB/WB/HF	lr: 7 / 14 R: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design	
s		Plenum Sens. + Lat	Total	Percent Of Total	Sensible .			Space Peak Space Sens	Coil Peak Tot Sens	Of Total
Envelope Leads	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Envelope Loads	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	ő	0	Ő	0	ő	0	Roof Cond	0	0	0.00
Glass Solar	Ö	Ö	0	0	o o	0	Glass Solar	Ö	0	0.00
Glass/Door Cond	Ö	Ö	Ö	Ō	0	0	Glass/Door Cond	0	0	0.00
Wall Cond	0	0	0	0	0	0	Wall Cond	0	0	0.00
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	0		0	0	0	0	Infiltration	0	0	0.00
Sub Total ==>	0	0	0	0	0	0	Sub Total ==>	0	0	0.00
Internal Loads							Internal Loads			
Lights	330	83	413	10	330	20	Lights	0	0	0.00
People	450	0	450	11	250	15	People	0	0	0.00
Misc	375	0	375	9	375	23	Misc	0	0	0.00
Sub Total ==>	1,156	83	1,238	30	956	59	Sub Total ==>	0	0	0.00
Ceiling Load	30	-30	0	0	32	2	Ceiling Load	-21	0	0.00
Ventilation Load	0	0	2,136	52	0	0	Ventilation Load	0	-2,826	80.59
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizin	g		0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	629		629	15	627	39			24	-0.69
Exhaust Heat		-35	-35	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat		-	109	3			RA Preheat Diff.		-636	18.13
Ret. Fan Heat		0	0	0			Additional Reheat		0 -69	0.00 1.98
Duct Heat Pkup		0	0	0			System Plenum Hear			
Underfir Sup Ht Pi	•	0	0	0			Underfir Sup Ht Pku	p	0	0.00
Supply Air Leakag	е	0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	1,815	18	4,078	100.00	1,615	100.00	Grand Total ==>	-21	-3,507	100.00

TEMPERATURES						
Cooling Heating						
SADB	55.0	70.3				
Ra Plenum	75.9	69.4				
Return	75.9	69.4				
Ret/OA	83.9	34.7				
Fn MtrTD	0.1	0.0				
Fn BldTD	0.3	0.0				
Fn Frict	0.9	0.0				

AIRFLOWS						
	Cooling	Heating				
Diffuser	73	73				
Terminal Main Fan	73 73	73 73				
Sec Fan	0	0				
Nom Vent	37	37				
AHU Vent	37	37				
Infil	0	0				
MinStop/Rh	73	73				
Return	73	73				
Exhaust	37	37				
Rm Exh	0	0				
Auxiliary	0	0				
Leakage Dwn	0	0				
Leakage Ups	0	0				

ENGINEERING CKS					
	Cooling	Heating			
% OA	50.0	50.0			
cfm/ft ²	0.67	0.67			
cfm/ton	215.81				
ft ² /ton	323.71				
Btu/hr-ft ²	37.07	-31.88			
No. People	1				

			COOLING	G COIL SELE	CTIC	NC				
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm		r DB/ °F	WB/HR gr/lb		e DB/\ °F	WB/HR gr/lb
Main Clg Aux Clg	0.3 0.0	4.1 0.0	2.4 0.0	73 0	83.9 0.0	69.5 0.0	86.6 0.0	53.7 0.0	-	54.8 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	0.3	4.1								

	AREAS	S		
Gross	s Total	Glas		
		ft²	(%)	
Floor	110			M
Part	0			Αı
Int Door	0			Pı
ExFlr	0			R
Roof	0	0	0	H
Wall	0	0	0	0
Ext Door	0	0	0	To

HEAT	ING COIL SE	LECT	ION	
	CapacityCoil A	Airflow	Ent	Lvg
	MBh	cfm	°F	°F
Main Htg	-1.3	73	53.7	70.3
Aux Htg	0.0	0	0.0	0.0
Preheat	-2.2	37	0.0	53.7
Reheat	-1.3	73	53.7	70.0
Humidif Opt Vent	0.0 0.0	0 0	0.0	0.0
Total	-3.5			

Project Name:

By Miller-Remick

Office 08

COC	OLING (COIL PEAK			CLG SPACE	PEAK	, L	HEATING C	OIL PEAK	
Peaked at Outsid		Mo/H OADB/WB/HR	r: 7 / 14 :: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design)	
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak Tot Sens	Of Total
F	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	F	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Envelope Loads Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00
Glass Solar	0	0	0	0	0	0	Glass Solar	0	0	0.00
Glass/Door Cond	0	0	0	0	0	0	Glass/Door Cond	0	0	0.00
Wall Cond	0	0	0	0	0	0	Wall Cond	0	0	0.00
Partition/Door	0	O	0	0	Ö	0	Partition/Door	0	0	0.00
Floor	0		Õ	ő	0	Õ	Floor	ŏ	ŏ	0.00
Adjacent Floor	0	0	0	Ö	0	0	Adjacent Floor	0	0	0.00
Infiltration	0	•	Ō	Ō	0	Ö	Infiltration	0	0	0.00
Sub Total ==>	0	0	0	0	0	0	Sub Total ==>	0	0	0.00
Internal Loads							Internal Loads			
Lights	390	98	488	10	390	20	Lights	0	0	0.00
People	450	0	450	9	250	13	People	0	0	0.00
Misc	444	0	444	9	444	23	Misc	0	0	0.00
Sub Total ==>	1,284	98	1,382	29	1,084	57	Sub Total ==>	0	0	0.00
Ceiling Load	36	-36	0	0	37	2	Ceiling Load	-25	0	0.00
Ventilation Load	0	0	2,525	53	0	0	Ventilation Load	0	-3,340	80.59
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	789		789	16	787	41	Exhaust Heat		29	-0.69
Exhaust Heat		-41	-41	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat			128	3			RA Preheat Diff.		-751	18.13
Ret. Fan Heat		0	0	0			Additional Reheat		0	0.00
Duct Heat Pkup		0	0	0			System Plenum Hea		-82	1.98
Underfir Sup Ht Pkup)		0	0			Underfir Sup Ht Pku	p	0	0.00
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	2,109	21	4,783	100.00	1,909	100.00	Grand Total ==>	-25	-4,145	100.00

TEMPE	RATUR	ES
	Cooling	Heating
SADB	55.0	70.3
Ra Plenum	75.9	69.4
Return	75.9	69.4
Ret/OA	83.9	34.7
Fn MtrTD	0.1	0.0
Fn BldTD	0.3	0.0
Fn Frict	0.9	0.0

AIRF	LOWS	
	Cooling	Heating
Diffuser	87	87
Terminal Main Fan	87 87	87 87
Sec Fan	0	0
Nom Vent	43	43
AHU Vent	43	43
Infil	0	0
MinStop/Rh	87	87
Return	87	87
Exhaust	43	43
Rm Exh	0	0
Auxiliary	0	0
Leakage Dwn	0	0
Leakage Ups	0	0

ENGINE	EERING (CKS
	Cooling	Heating
% OA	50.0	50.0
cfm/ft ²	0.67	0.67
cfm/ton	217.45	
ft ² /ton	326.17	
Btu/hr-ft ²	36.79	-31.88
No. People	1	

			COOLING	GOIL SELE	CTIC	N				
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Enter °F	_	WB/HR gr/lb	Leav °F	-	WB/HR gr/lb
Main Clg Aux Clg	0.4 0.0	4.8 0.0	2.9 0.0	87 0	83.9 6 0.0		86.6 0.0	53.7 0.0	51.9 0.0	55.4 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	0.4	4.8								

	AREA	_		
Gros	ss Total	Glass ft ²	s (%)	
Floor	130		` ,	Mai
Part	128			Aux
Int Door	0			Pre
ExFlr	0			Ref
Roof	0	0	0	Hur
Wall	0	0	0	Opt
Ext Door	0	0	0	Tot

HEAT	ING COIL S	ELECT	ION	
	CapacityCoil	Airflow	Ent	Lvg
	MBh	cfm	°F	°F
Main Htg	-1.6	87	53.7	70.3
Aux Htg	0.0	0	0.0	0.0
Preheat	-2.6	43	0.0	53.7
Reheat	-1.6	87	53.7	70.0
Humidif	0.0	0	0.0	0.0
Opt Vent	0.0	0		0.0
Total	-4.1			

Project Name:

10N Guidance

Air Filtration Standards for SPD, Sterile Supply Areas, RME Reprocessing Areas -New Facilities/Construction and AHU Replacements-

				Centralized Monitoring of		
Functional Area	Pre-Filter Efficiency Pre-Fiter Set #1	Pre-Filter Efficiency Pre-Fiter Set #2	After/Final-Filter Efficiency	Filter Loading (i.e. Building Automotion System)	Inspection Frequency ²	Replacement Criteria
SPD- Soiled/Decontamination	Comply with the VA HV	Comply with the VA HVAC Design Manual for Hospitals, Ambulatory	spitals, Ambulatory	Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	Air filter loading reaches recommended optimum (obtained from filter manufacturer). Or Evidence of damage, media
SPD- Preparation, Assembly, Sterilzation Area	(PG)	Outparent Chinos, and Labor (PG-18-10) dtd. March 2011	diores	Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	deterioration, microbial growth. Or 3. Minimum space airflow (CFM) and ACH requirements cannot be achieved.
SPD- Sterilizer Equipment Room			N/A-Ro	N/A- Room supplied by transfer make-up air.	(e-up air.	
SPD- Restrooms/Housekeeping			N/A-Ro	N/A- Room supplied by transfer make-up air.	(e-up air.	
SPD- Clean/Sterile Storage				Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	Air filter loading reaches recommended optimum (obtained from filter manufacturer).
Non-SPD- Sterile/Clean Supply Room (e.g. wards, clinics, etc.)	Comply with the VA HV/ Care, Outp (PG	Comply with the VA HVAC Design Manual for Hospitals, Ambulatory Care, Outpatient Clinics, and Laboratories (PG-18-10) dtd. March 2011	ospitals, Ambulatory atories	Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	Or 2. Evidence of damage, media deterioration, microbial growth. Or
Non-SPD- RME Reprocessing Room (e.g. wards, clinics, etc.)			1	Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	ACH requirements cannot be achieved.

Notes: 1 Installed manometer or pressure differential device connected to building automation system for monitoring purposes.

² Inspection frequencies listed represent minimuns established by VHA and are not intended to preclude more frequent inspections necessitated by local conditions.

10N Guidance Air Filtration Standards for SPD, Sterile Supply Areas, RME Reprocessing Areas

-Existing Facilities/Construction-

			Centralized monitoring		
	Pre-Filter Efficiency	After/Final-Filter Efficiency	of filter loading		
Functional Area	(minimum)	(minimum)	System)	Inspection Frequency 2	Replacement Criteria
			ON	Every three months check for filter loading and filter integrity.	1. Air filter loading reaches
SPD. Soiled/Decontamination	Existing	VA Grade B (MERV 11)	Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	recommended optimum (obtained from filter manufacturer). Or 2. Evidence of damage, media
		The state of the s	ON.	Every three months check for filter loading and filter integrity.	deterioration, microbial growth. Or 3. Minimum space airflow (CFM) and
SPD- Preparation, Assembly, Sterilization Area	Existing	VA Grade B (MERV 11)	Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	ACH requirements cannot be achieved.
SPD- Sterilizer Equipment Room			N/A- Room supplied	N/A- Room supplied by transfer make-up air.	
SPD- Restrooms/Housekeeping			N/A- Room supplied	N/A- Room supplied by transfer make-up air.	THE REAL PARTY OF THE PARTY OF
			o _N	Every three months check for filter loading and filter integrity.	
SPD. Clean/Sterile Storage	Existing	VA Grade B (MERV 11)	Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	1. Air filter loading reaches
			OZ.	Every three months check for filter loading and filter integrity.	recommended optimum (obtained from filter manufacturer). Or
Non-SPD- Sterile/Clean Supply Room (e.g. wards, clinics, etc.)	Existing	VA Grade B/C/D/E ³ (MERV 11/14/15/17)		Continual monitoring of filter loading. Every six months check for filter integrity.	Evidence of damage, media deterioration, microbial growth. Or Minimum space airflow (CFM) and
				Every three months check for filter loading and filter integrity.	ACH requirements cannot be achieved.
Non-SPD- RME Reprocessing Room (e.g. wards, clinics, etc.)	Existing	VA Grade B/C/D/E ³ (MERV 11/14/15/17)	Yes	Continual monitoring of filter loading. Every six months check for filter integrity.	

¹ Installed manometer or pressure differential device connected to building automation system for monitoring purposes.

Inspection frequencies listed represent minimuns established by VHA and are not intended to preclude more frequent inspections necessitated by local conditions. Notes:

³ Air filtration efficiency is determined by the most stringent requirement for the space function being served (i.e.- Dental Clinic, ICU, Pharmacy, Nursing Ward, ect.). As a minumum, After/Final-filter efficiency shall be equal or higher than VA Grade B (MERV 11).

Job Name User Name Address Miller Remick VA Lebanon Bldg 101 and Bldg 22 (T92)Andrew Bees

Philadelphia Main Office

Performance Climate Changer

1

Job Comments

Quantity

AHU 22

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Air-handling performance data is certified in accordance with AHRI standard 430. Air handlers with plenum fans and vertical draw-thru air handlers where the coil is mounted immediately below the fan section are not covered under the scope of AHRI 430.

Module Position:	0
	4222.7
	3819.0
ge - 63 Hz	91 (
ge - 125 Hz	90 (
	
ge - 250 Hz	77 (
ge - 500 Hz	101 (
ge - 1K Hz	94 (
ge - 2K Hz	93 (
ge - 4K Hz	84 (
ge - 8K Hz	79 0
<u>z</u>	94 0
<u> </u>	96 (
<u> </u>	75 (
<u> </u>	91 (
<u>z</u>	77
<u>z</u>	78
<u>z</u>	76
<u>z</u>	67 (
	85 (
	87 (
	70 (
	87 (
	73 (
	76
	61 0
	51 (
	86 (
	82
	69 (
	85
	78 (
	63 (
	55 (
	52 (
	Module Position:

Factory controls package	No factory mount	Design Sequence	С
Automatic Selection	Validation Only	Number of transformers	1 - Transformer
Controller mounting	No mount	Prepackaged solution option used	MP common configuration not
			used
Controller type	No controller	Prepackaged solution valid unit	Non valid MP common
			configuration
LCD screen and keypad	No LCD	Total number of control points	2 control points

Warranty		Module Position:	U
Warranty section	Std. warranty only		

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Air-handling performance data is certified in accordance with AHRI standard 430. Air handlers with plenum fans and vertical draw-thru air handlers where the coil is mounted immediately below the fan section are not covered under the scope of AHRI 430.

Pipe cabinet section 0 Module Position:

Pipe cabinet 1 side doors One side door

Module Position: Fan sec [1]-1 50.500 in Section type Fan Section width Fan application Return fan Section weight 673.6 lb Unit size Static pressure origin Program calculated 76 dB Bottom inlet Single or front discharge - 63 Hz Inlet location Front-top discharge Single or front discharge - 125 Hz 65 dB Fan orientation Fan discharge Front top Single or front discharge - 250 Hz 59 dB 55 dB Access door location Single or front discharge - 500 Hz **Drive location** Right side drive Single or front discharge - 1K Hz 59 dB 59 dB Design sequence F Single or front discharge - 2K Hz 48 dB Motor horsepower per fan 3 hp Single or front discharge - 4K Hz NEMA nominal motor efficiency 89.50 % Single or front discharge - 8K Hz 40 dB Motor class Inlet and casing - 63 Hz 75 dB NEMA premium compliant Motor voltage 460/3 Inlet and casing - 125 Hz 73 dB Cycle 60 cycles/sec Inlet and casing - 250 Hz 66 dB Drive service factor 1.5 fixed drive Inlet and casing - 500 Hz 56 dB 64 dB Motor RPM 1800 Inlet and casing - 1K Hz Marine LED light 66 dB Marine light Inlet and casing - 2K Hz 3200 cfm 64 dB Fan airflow Inlet and casing - 4K Hz 0.500 in H2O Overall ESP 52 dB Inlet and casing - 8K Hz 0.250 in H2O 71 dB Unit entering ESP Ducted inlet - 63 Hz Unit discharge ESP 0.250 in H2O Ducted inlet - 125 Hz 64 dB 0.00 ft 56 dB Elevation Ducted inlet - 250 Hz Minimum temperature 40 00 F Ducted inlet - 500 Hz 50 dB 70.00 F 55 dB Ducted inlet - 1K Hz Design temperature 10in. diameter FC, class 1 Fan size and type Ducted inlet - 2K Hz 56 dB 1.901 hp 54 dB Total brake horsepower Ducted inlet - 4K Hz Total brake horsepower at min temp 2.015 hp Ducted inlet - 8K Hz 42 dB Total static pressure 1.276 in H2O Casing - 63 Hz 73 dB 68 dB 1194 rpm Speed Casing - 125 Hz 1.04 sq ft Outlet area Casing - 250 Hz 63 dB 3086 ft/min Casing - 500 Hz 60 dB Fan outlet velocity 0.500 in H2O 72 dB Fan module pressure drop Casing - 1K Hz Fan discharge loss pressure drop 0.000 in H2O Casing - 2K Hz 52 dB 41.250 in 33 dB Section height Casing - 4K Hz 44.000 in 24 dB Section length Casing - 8K Hz

> Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Air-handling performance data is certified in accordance with AHRI standard 430. Air handlers with plenum fans and vertical draw-thru air handlers where the coil is mounted immediately below the fan section are not covered under the scope of AHRI 430.

Fan section

Access section 2 Module Position: Section type Access/blank/turning Design sequence В 10.000 in Unit size Section length 50.500 in Section size Small Section width Front opening Full Face Section height 41.250 in Back opening Full Face Section weight 83.8 lb

Controls section Module Position: 3

Section type	Starter/VFD only	Ret/Exh fan high voltage door	Right
<u>Unit size</u>	Unit size 8	Design sequence	В
Starter/VFD	Return/exhaust section	Section length	24.500 in
NEMA application type	Internal NEMA	Section width	50.500 in
Access door location	Left	Section height	41.250 in
Access door swing direction	Outward swing	Section weight	280.9 lb

Economizer section Module Position: 4

Economizer section type	Return fan economizer	Exhaust air damper type	Parallel blade damper
Outside air location	Left	Exhaust air hood type	Exhaust hood w/ bird screen
Outside air damper type	Parallel blade damper	Supply fan total air PD	0.196 in H2O
Outside air hood type	No inlet hood	Exhaust fan total air PD	0.776 in H2O
Return air damper type	Parallel blade damper		

Filter section Module Position: 5

Section type	Filter	Filter condition	Mid-life
<u>Unit size</u>	8	Filter area	11.11 sq ft
Filter type	Angled filter	Filter face velocity	288 ft/min
Filter frame	2in. filter frame	Filter pressure drop	0.569 in H2O
Access door location	Right	Filter section pressure drop	0.569 in H2O
Primary filter type 1	Pleated media - MERV 8	Section length	26.500 in
Prefilter filter type	No prefilter	Section width	50.500 in
<u>Design sequence</u>	С	Section height	41.250 in
Filter airflow	3200 cfm	Section weight	236.7 lb

Access section Module Position: 6

Section type	Access/blank/turning	Design sequence	в
<u>Unit size</u>	8	Marine light	Marine LED light
Section size	Medium	Section length	14.000 in
Access door location	Left	Section width	50.500 in
Door swing direction	Outward swing	Section height	41.250 in
Front opening	Full Face	Section weight	113.3 lb
Back opening	Full Face		

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Air-handling performance data is certified in accordance with AHRI standard 430. Air handlers with plenum fans and vertical draw-thru air handlers where the coil is mounted immediately below the fan section are not covered under the scope of AHRI 430.

Coil section Module Position: 7

Coil se [4]-1			
Section type	Horizontal coil	Rows	1 row
<u>Unit size</u>	8	Fin type	Sigma flo fins
Section size	Medium	Fin material	Aluminum fins
Coil application	Heating coil	Tube diameter	1in. tube diameter (25.4 mm)
Changeover coil	No	Tube matl/wall thickness	.031" (0.787mm) copper tubes
System type	Steam	Corrosion resistant coating	None
Coil supply/cabinet side	Right	Coil face velocity	492 ft/min
Coil casing	Galvanized	Air pressure drop	0.147 in H2O
Coil height	Unit coil height	J trap dimension	6.000 in
<u>Drain pan</u>	Stainless steel	H trap dimension	12.000 in
<u>Drain connection location</u>	Right	Fluid volume	1.29 gal
<u>Design sequence</u>	D	Steam pressure drop	11.072 in H2O
Apply AHRI ranges	Yes	<u>Coil condensate</u>	285.97 lb/hr
Coil performance airflow	3200 cfm	Total cap coil #1	270.69 MBh
<u>Coil elevation</u>	0.00 ft	Coil face area	6.50 sq ft
Entering dry bulb	0.00 F	Coil rigging weight	75.8 lb
Leaving dry bulb	78.00 F	Coil section pressure drop	0.147 in H2O
Total capacity	270.69 MBh	Section length	14.000 in
Fin spacing	77 Per Foot	Section height	41.250 in
Steam pressure	15.00 psig	Section width	50.500 in
Coil type	NS	Section weight	286.8 lb

Access section Module Position: 8

Section type	Access/blank/turning	Design sequence	В
<u>Unit size</u>	8	Marine light	Marine LED light
Section size	Medium	Section length	14.000 in
Access door location	Left	Section width	50.500 in
Door swing direction	Outward swing	Section height	41.250 in
Front opening	Full Face	Section weight	141.5 lb
Back opening	Full Face		

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Air-handling performance data is certified in accordance with AHRI standard 430. Air handlers with plenum fans and vertical draw-thru air handlers where the coil is mounted immediately below the fan section are not covered under the scope of AHRI 430.

9

Performance Climate Changer

Module Position: Coil se [6]-1 Section type Horizontal coil Fluid type

Water Coil fluid percentage 100.00 % Unit size 8 4.00 psig Section size Extended medium Target valve pressure drop Coil application Cooling coil Coil type UW Changeover coil Rows 8 rows System type Chilled water Fin type Delta flo H (Hi efficient) Fin material Aluminum fins Coil supply/cabinet side Right Coil casing Galvanized Tube diameter 1/2in. tube diameter (12.7 mm) Coil height Unit coil height Tube matl/wall thickness .016" (0.406mm) copper tubes Stainless steel Drain pan Corrosion resistant coating None **Drain connection location** Coil face velocity 401 ft/min Design sequence D Air pressure drop 0.758 in H2O Apply AHRI ranges Yes J trap dimension 2.051 in 3200 cfm Coil performance airflow H trap dimension 4.101 in Coil elevation 0.00 ft Leaving fluid temperature 55.00 F Entering dry bulb 95.00 F Fluid pressure drop 8.85 ft H2O Entering wet bulb 76.00 F Fluid volume 7.12 gal Leaving dry bulb 52.00 F Fluid velocity 4.02 ft/s 51.90 F Leaving wet bulb Coil face area 7.99 sq ft 152.72 MBh Sensible capacity Coil rigging weight 167.8 lb Total capacity 258.91 MBh Coil installed weight 227.4 lb 120 Per Foot Coil section pressure drop 0.758 in H2O Fin spacing Entering fluid temperature 45.00 F Section length 19.000 in 10.00 F 41.250 in Fluid temperature rise Section height Standard fluid flow rate 51.60 gpm Section width 50.500 in Coil fouling factor 0.00000 hr-sq ft-deg F/Btu Section weight 469.8 lb

Access section 10 Module Position:

Section type	Access/blank/turning	Design sequence	В
<u>Unit size</u>	8	Section length	10.000 in
Section size	Small	Section width	50.500 in
Front opening	Full Face	Section height	41.250 in
Back opening	Full Face	Section weight	83.8 lb

Controls section 11 Module Position:

Section type	Starter/VFD only	<u>Design sequence</u>	В
<u>Unit size</u>	Unit size 8	Section length	24.500 in
Starter/VFD	Supply section	Section width	50.500 in
NEMA application type	Internal NEMA	Section height	41.250 in
Supply fan high voltage door	Right	Section weight	278.0 lb

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Air-handling performance data is certified in accordance with AHRI standard 430. Air handlers with plenum fans and vertical draw-thru air handlers where the coil is mounted immediately below the fan section are not covered under the scope of AHRI 430.

Coil section

91.8 lb

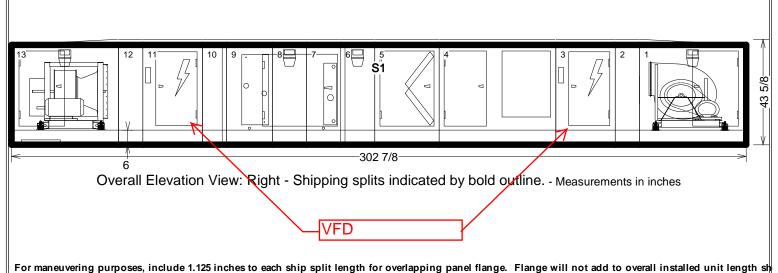
Performance Climate Changer

Access section 12 Module Position: Section type Access/blank/turning Design sequence В 10.000 in Unit size Section length 50.500 in Section size Small Section width Front opening Full Face Section height 41.250 in

Section weight

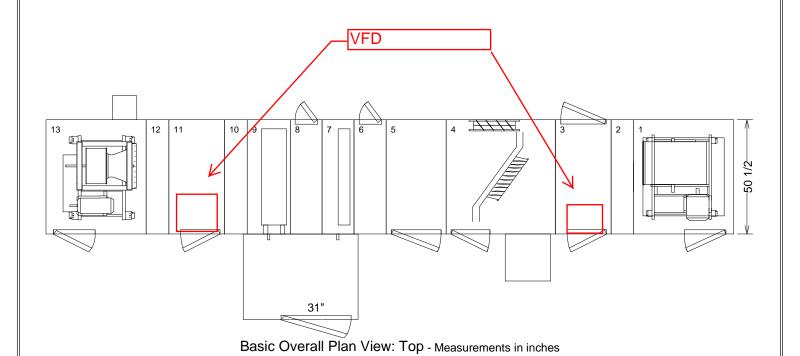
Fan section Module Position: 13

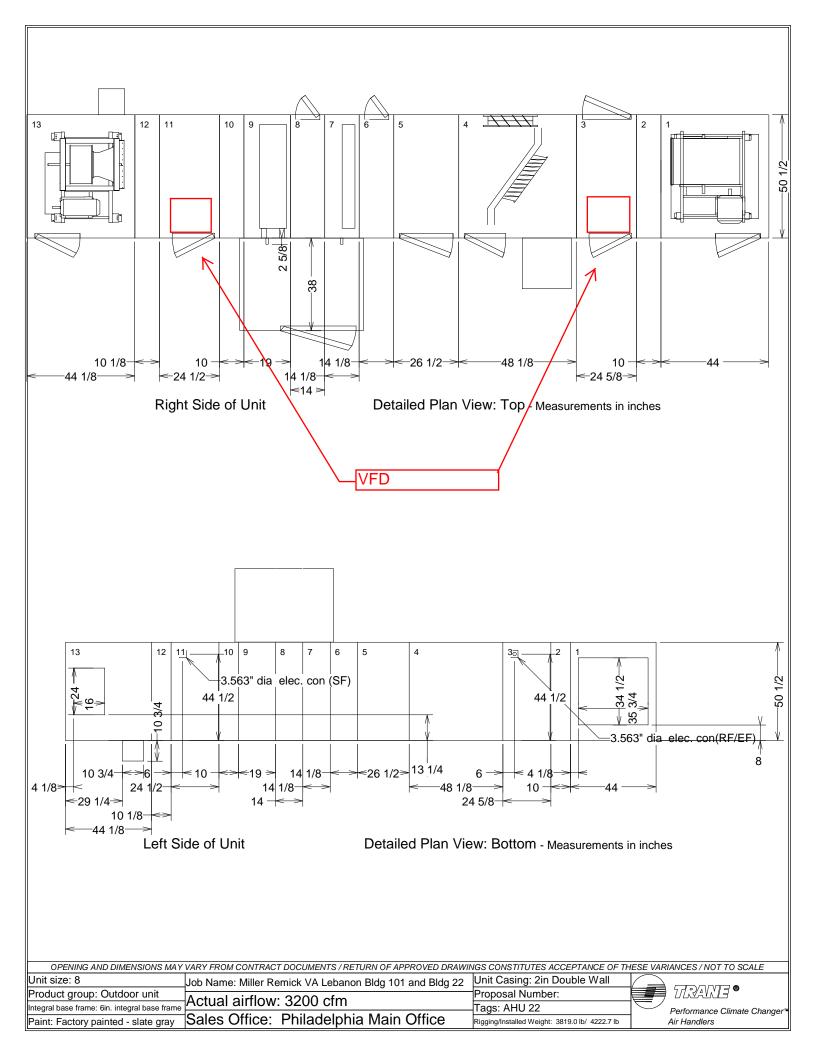

Full Face

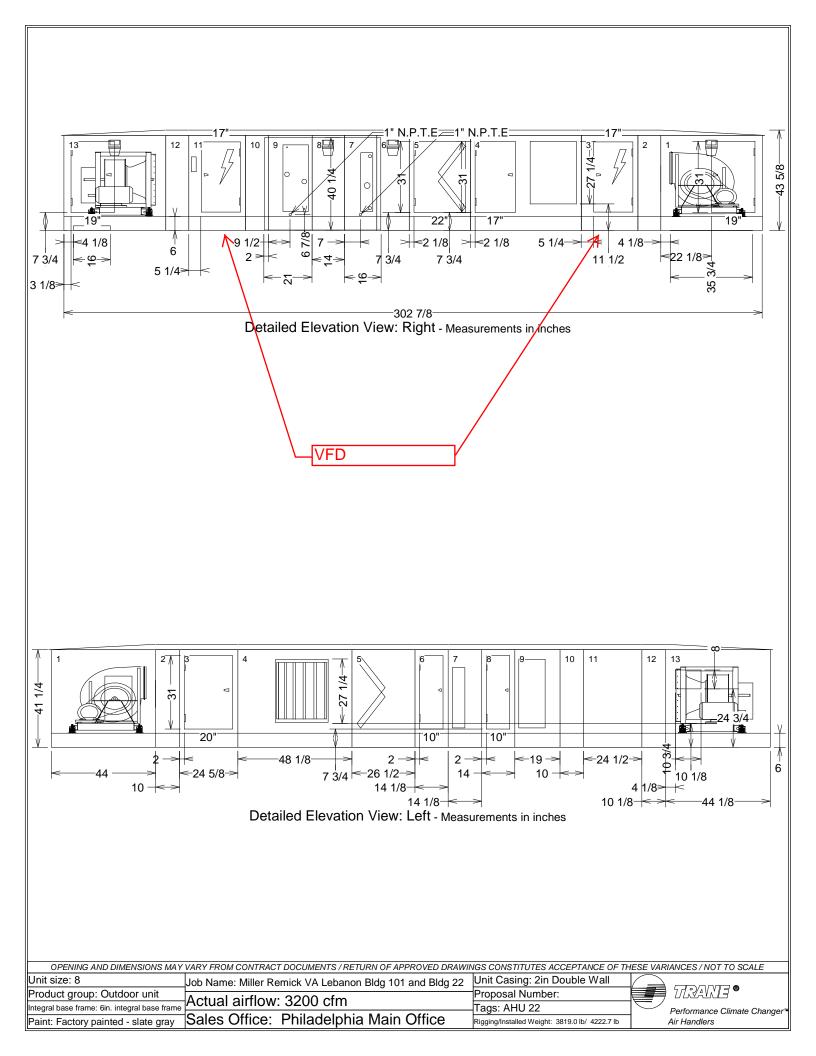

ran section			Module Position:	13
Fan sec [7]-1				
Section type	Fan	Section weight		787.6 lb
Fan application	Supply fan	Static pressure origin		Program calculated
<u>Unit size</u>	8	Single or front discharge - 63 Hz		91 dB
Inlet location	Back inlet	Single or front discharge - 125 Hz		90 dB
Fan orientation	Plenum fan	Single or front discharge - 250 Hz		77 dB
Fan discharge	Bottom front	Single or front discharge - 500 Hz		101 dB
Access door location	Right	Single or front discharge - 1K Hz		94 dB
Drive location	Right side drive	Single or front discharge - 2K Hz		93 dB
Design sequence	E	Single or front discharge - 4K Hz		84 dB
Motor horsepower per fan	7.5 hp	Single or front discharge - 8K Hz		79 dB
NEMA nominal motor efficiency	91.00 %	Inlet and casing - 63 Hz		94 dB
Motor class	NEMA premium compliant	Inlet and casing - 125 Hz		96 dB
	ODP			
Motor voltage	460/3	Inlet and casing - 250 Hz		75 dB
<u>Cycle</u>	60 cycles/sec	Inlet and casing - 500 Hz		91 dB
<u>Drive service factor</u>	1.5 fixed drive	Inlet and casing - 1K Hz		77 dB
Motor RPM	1800	Inlet and casing - 2K Hz		78 dB
Marine light	Marine LED light	Inlet and casing - 4K Hz		76 dB
Fan airflow	3200 cfm	Inlet and casing - 8K Hz		67 dB
Overall ESP	2.000 in H2O	Ducted inlet - 63 Hz		85 dB
Unit entering ESP	1.000 in H2O	Ducted inlet - 125 Hz		87 dB
Unit discharge ESP	1.000 in H2O	Ducted inlet - 250 Hz		70 dB
<u>Elevation</u>	0.00 ft	Ducted inlet - 500 Hz		87 dB
Minimum temperature	40.00 F	Ducted inlet - 1K Hz		73 dB
Design temperature	70.00 F	Ducted inlet - 2K Hz		76 dB
Fan size and type	14in. belt-drive plenum, class 1	Ducted inlet - 4K Hz		61 dB
Plenum fan bottom discharge	1st bottom rectangular opening	Ducted inlet - 8K Hz		51 dB
Total brake horsepower	3.913 hp	Casing - 63 Hz		86 dB
Total brake horsepower at min temp	4.148 hp	Casing - 125 Hz		82 dB
Total static pressure	3.850 in H2O	<u>Casing - 250 Hz</u>		68 dB
Speed	2876 rpm	<u>Casing - 500 Hz</u>		85 dB
Fan module pressure drop	2.180 in H2O	Casing - 1K Hz		77 dB
Section height	41.250 in	Casing - 2K Hz		63 dB
Section length	44.000 in	Casing - 4K Hz		55 dB
Section width	50.500 in	<u>Casing - 8K Hz</u>		52 dB

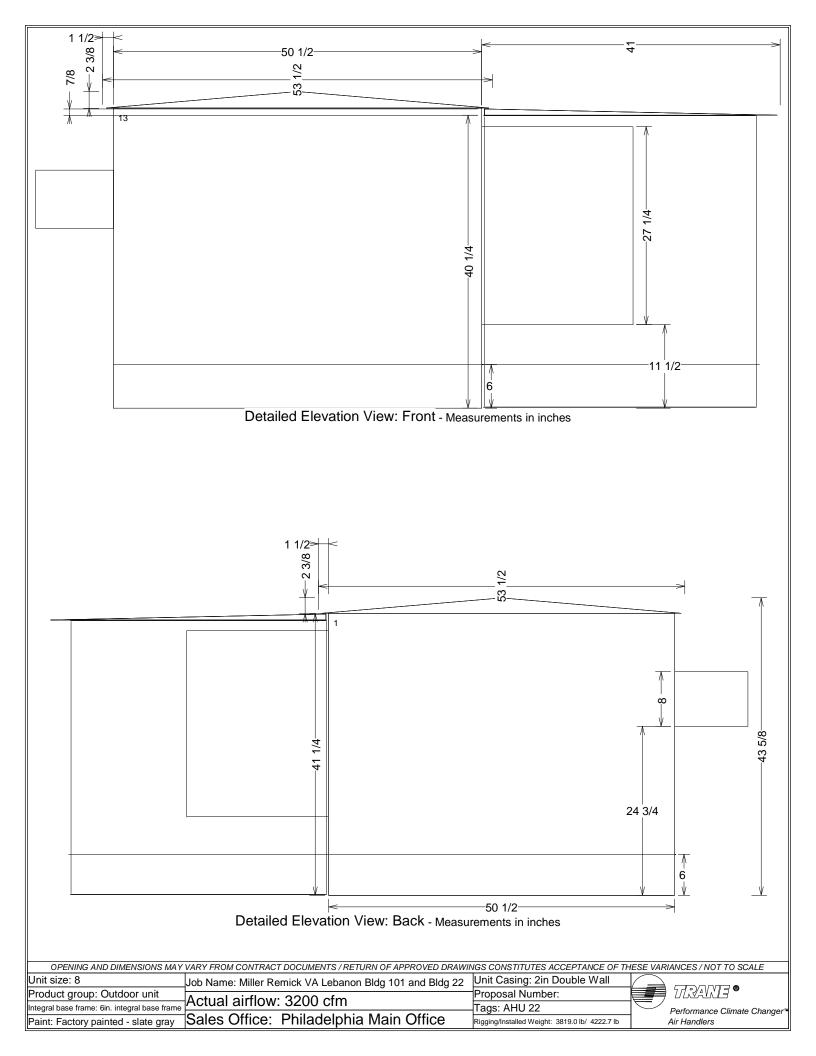
Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

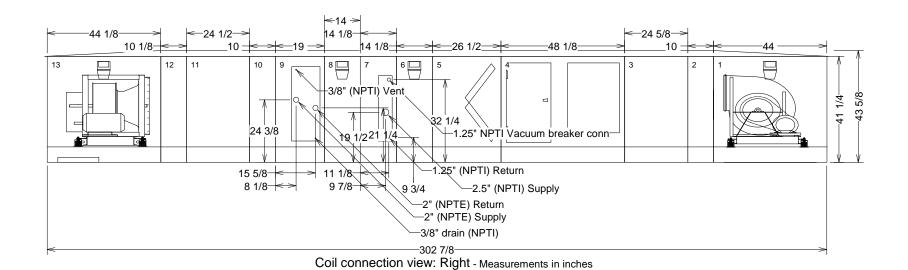
Air-handling performance data is certified in accordance with AHRI standard 430. Air handlers with plenum fans and vertical draw-thru air handlers where the coil is mounted immediately below the fan section are not covered under the scope of AHRI 430.


Back opening

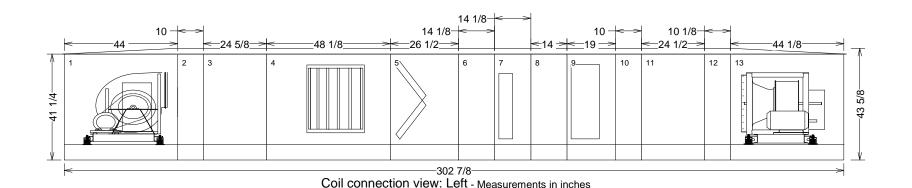

Weight


Pos # 1 2 3 4 5 6 7 8 9 10 11 12	Module Fan section Access section Controls section Economizer section Filter section Access section Coil section Access section Coil section Access section Controls section Access section Controls section Access section	Length 44 10 24 5/8 48 1/8 26 1/2 14 1/8 14 1/8 14 19 10 24 1/2 10 1/8	Weight 673.65 83.78 280.94 350.99 236.75 113.32 286.77 141.46 469.77 83.78 277.96 91.76	Module Roof Curb Installed Unit Weight	Weight 344.15 4222.70 lbs
			91.76 787.63		




OPENING AND DIMENSIONS MAY VARY FROM CONTRACT DOCUMENTS / RETURN OF APPROVED DRAWINGS CONSTITUTES ACCEPTANCE OF THESE VARIANCES / NOT TO SCALE

Unit size: 8	Job Name: Miller Remick VA Lebanon Bldg 101 and Bldg 22	Unit Casing: 2in Double Wall	
Product group: Outdoor unit	Actual airflow: 3200 cfm	Proposal Number:	
Illintegral base frame: oin. Integral base frame		Tags: AHU 22	Performance Climate Changer™
Paint: Factory painted - slate gray	Sales Office: Philadelphia Main Office	Rigging/Installed Weight: 3819.0 lb/ 4222.7 lb	Air Handlers



NPTI: National Pipe Thread Internal Connection NPTE: National Pipe Thread External Connection

<u>'</u>			
OPENING AND DIMENSIONS	MAY VARY FROM CONTRACT DOCUMENTS / RETURN OF APPROV	ED DRAWINGS CONSTITUTES ACCEPTANCE OF THESE	VARIANCES / NOT TO SCALE
Unit size: 8	Job Name: Miller Remick VA Lebanon Bldg 101 and Bldg 22	Unit Casing: 2in Double Wall	
Product group: Outdoor unit	Actual airflow: 3200 cfm	Proposal Number:	
Integral base frame: 6in. integral base frame		Tags: AHU 22	Performance Climate Changer™
Paint: Factory painted - slate gray	Sales Office: Philadelphia Main Office	Rigging/Installed Weight: 3819.0 lb/ 4222.7 lb	Air Handlers

NPTI: National Pipe Thread Internal Connection NPTE: National Pipe Thread External Connection

Paint: Factory painted - slate gray

OPENING AND DIMENSIONS MAY VARY FROM CONTRACT DOCUMENTS / RETURN OF APPROVED DRAWINGS CONSTITUTES ACCEPTANCE OF THESE VARIANCES / NOT TO SCALE Unit size: 8 Unit Casing: 2in Double Wall Job Name: Miller Remick VA Lebanon Bldg 101 and Bldg 22 7/2/4V/I= * Proposal Number: Product group: Outdoor unit Actual airflow: 3200 cfm Integral base frame: 6in. integral base frame Tags: AHU 22

Sales Office: Philadelphia Main Office Rigging/Installed Weight: 3819.0 lb/ 4222.7 lb

The Leader in Air Management

Basic Unit with Controls

Single/Dual Duct Terminals

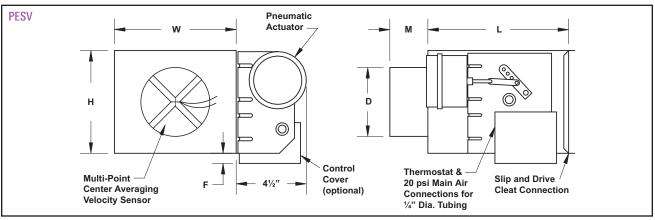
Available Models:

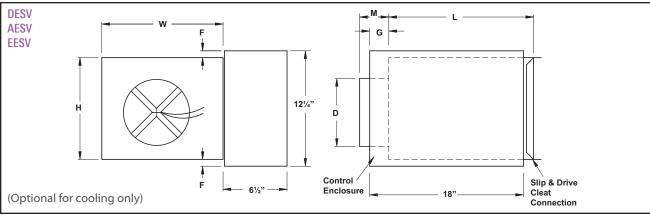
PESV EESV PneumaticElectric

AESV

 Analog Electronic

DESV


 Digital Electronic


 Standard AeroCross™ multi-point center averaging velocity sensor (except EESV).

- Standard dual density insulation.
- Standard 22-gauge casing with slip and drive discharge connection.
- Controls supplied by Titus are factory calibrated for a quicker start-up.

			I	=					
SIZE	CFM RANGE	D	PESV	AESV DESV EESV	G	Н	L	M	W
4	0-225	37/8	1%	21/8	73/8	8	151/2	53/8	12
5	0-350	47/8	1%	21/8	73/8	8	151/2	5%	12
6	0-500	5%	1%	21/8	73/8	8	151/2	3%	12
7	0-650	67/8	7/8	11//8	73/8	10	151/2	3%	12
8	0-900	7%	7/8	11//8	73/8	10	151/2	3%	12
9	0-1050	87/8	-	-	53/8	121/2	151/2	3%	14
10	0-1400	97/8	-	-	53/8	121/2	151/2	3%	14
12	0-2000	117/8	-	-	53/8	15	151/2	33/8	16
14	0-3000	137/8	-	-	33/8	171/2	151/2	3%	20
16	0-4000	15%	-	-	33/8	18	151/2	33/8	24
24X16	0-8000	23% - 15%	7/8	11/8	53/8	18	15	33/8	38

ACCESSORIES

Single/Dual Duct Terminals

INTEGRAL SOUND ATTENUATOR

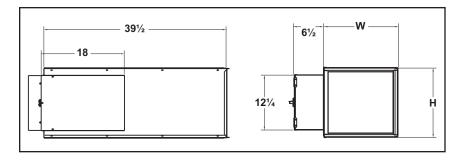
Titus' unique integral design minimizes casing leakage and disturbance to airflow with no casing or insulation seams.

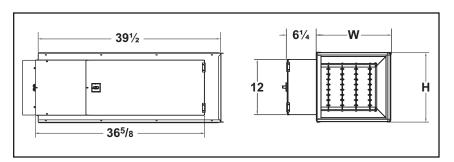
INTEGRAL ELECTRIC COIL

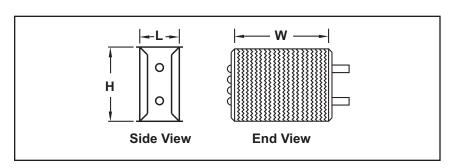
With a rigid one piece assembly, Titus locates the heating elements for optimal heat transfer and insets them for protection during shipment and installation.

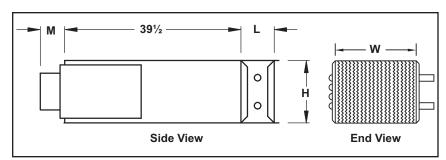
STANDARD FEATURES:

- Primary automatic reset thermal cutout (one per coil).
- Secondary manual reset thermal cutout.
- Airflow switch (differential pressure).
- Derated nickel chrome heating elements.
- Magnetic or safety contactors (as required).
- · Line terminal block.
- · Control terminal block.
- FTI listed.
- 80/20 nickel chrome element wire.


OPTIONAL FEATURES:

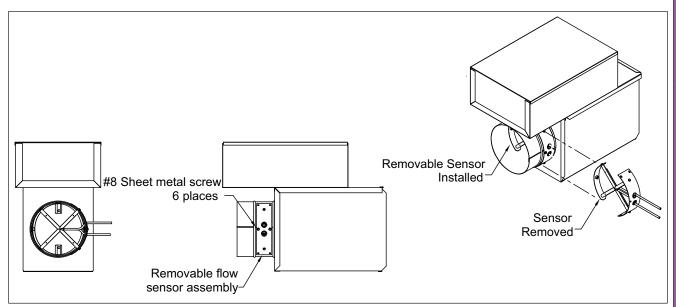

- Class II, 24 volt control transformer.
- Mercury contactors.
- · Door interlock disconnect switch.
- · Main supply fuses.
- Dust tight construction.
- · Removable flow sensor.

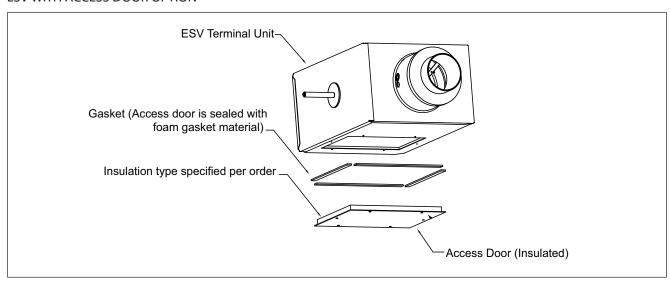

HOT WATER REHEAT COILS

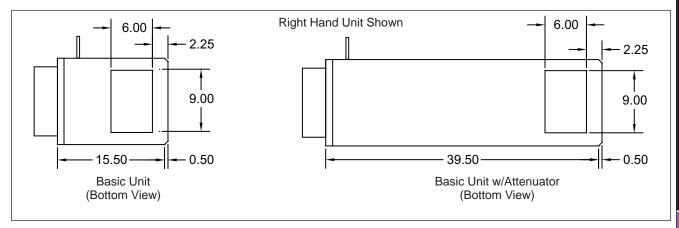

Details on water coil features are shown on performance pages M18-22.

INTEGRAL SOUND ATTENUATOR WITH OPTIONAL HOT WATER REHEAT COIL

INLET	Н	M	W	WATER	R COIL
SIZE	- 11	IVI	VV	L (1-2 ROW)	L (3-4 ROW)
4, 5	8	5%	12	5	71/4
6	8	3%	12	5	71⁄4
7, 8	10	3%	12	5	71/4
9, 10	121/2	3%	14	5	71/4
12	15	3%	16	5	71/4
14	171/2	3%	20	71/2	9¾
16	18	3%	24	71/2	9¾
24X16	18	3%	38	5	71/4


Note: The total length of the ESV basic unit and accessories (attenuators and coils) is the summation of basic unit length and the accessories length.

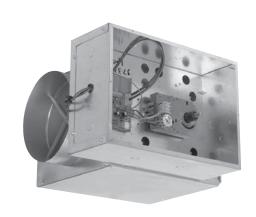

ACCESSORIES


Single/Dual Duct Terminals

REMOVABLE FLOW SENSOR

ESV WITH ACCESS DOOR OPTION

Single/Dual Duct Terminals


RECOMMENDED PRIMARY AIR CFM RANGES / ALL TERMINALS

Control Types:

PESV • Pneumatic • Analog Electronic **AESV DESV** • Digital Electronic

QUICK SELECTION PROCEDURE

- 1. Select unit inlet size based upon acoustic parameters and/ or maximum pressure drop requirements, using pages M13.
- 2. Check inlet size selection against cfm control limits based on control type shown on this page.
- 3. Select accessories (multi-outlets, attenuators) as required.
- 4. Select reheat coil, if required. Make your selection using the actual heating flow rate, not cooling.

				cfm Rang	es of Minimum	n and Maximum	Settings		
Inlet Size	Total cfm	PESV - Pi	neumatic	PESV - P	neumatic	AESV - Analo	og Electronic	DESV -	Digital
Tillet Size	Range	Titus II C	Controller	Titus I C	ontroller	TA1 Co	ntroller	Typical C	Controller
		Minimum	Maximum	Minimum	Maximum	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM
4	0-225	45*-170	80-225	55*-170	80-225	45*-225	45-225	45*-225	45-225
5	0-350	65*-270	120-350	85*-270	120-350	65*-350	65-350	65*-350	65-350
6	0-500	80*-330	150-500	105*-330	150-500	80*-500	80-500	80*-500	80-500
7	0-650	105*-425	190-650	135*-425	190-650	105*-650	105-650	105*-650	105-650
8	0-900	145*-590	265-900	190*-590	265-900	145*-900	145-900	145*-900	145-900
9	0-1050	175*-700	315-1050	225*-700	315-1050	175*-1050	175-1050	175*-1050	175-1050
10	0-1400	230*-925	415-1400	300*-925	415-1400	230*-1400	230-1400	230*-1400	230-1400
12	0-2000	325*-1330	600-2000	425*-1330	600-2000	325*-2000	325-2000	325*-2000	325-2000
14	0-3000	450*-1800	810-3000	575*-1800	810-3000	450*-3000	450-3000	450*-3000	450-3000
16	0-4000	580*-2350	1100-4000	750*-2350	1100-4000	580*-4000	580-4000	580*-4000	580-4000
24X16	0-8000	1400*-5200	2600-8000	1800*-5200	2600-8000	1400*-7500	1400-7500	1400*-7500	1400-7500

*Factory cfm settings (except zero) will not be made below this range because control accuracy is reduced. On pressure dependent units, minimum cfm is always zero and there is no maximum.

Note: On controls mounted by Titus but supplied by others (FMA or Factory Mounting Authorization), these values are guidelines only. Controls mounted on an FMA basis are calibrated in the field.

Single/Dual Duct Terminals

PESV, AESV, DESV / RADIATED SOUND PERFORMANCE

Size			Min	-												ban	<u>id Sc</u>	ounc	1 PO												
0	e CFI	М	ΔPs				5″ Δ	_						0″∆						-	5″ Δ							0″ Δ	_		
	1			2	3	4	5	6	7	NC	2	3	4	5	6	7	NC	2	3	4	5	6	7	NC	2	3	4	5	6	7	NC
	10		0.02	49	45	36	33	31	26	11	52	48	39	36	35	31	15	53	50	41	37	37	34	17	55	51	43	38	39	36	18
	12	_	0.03	52	49	39	36	32	27	16	55	52	42	38		32	20	57	54	44	40		36	22	58	55	45	41	40	38	23
4	15	_	0.04	55	52	41	37	34	28	20	_	55	44	40	38	34	_		57			40	37	25	61	58	47	42		-	27
	17		0.06	58	55	42	39 40	35	29	23			46	42 43		34	27 29	63				41	_	28		61	49	44		40	30 33
	15	_	0.08	60 49	57 44	36	32	36 31	30 25	25	63 53	60 49	47 41	36	40 35	35 30	16		62		38	42 37	38	31 18	66 57	63	51 45	45 39	39	41 35	21
	20		0.01	53	44	39	35	34	27	15		53	44	38	37	32			55			40				57	48	42	41	37	25
5	25	- 6	0.02	55		41	37	35	29	20			46			34				49				28	63			44		39	30
ľ	30		0.04	58	54	43	39	37	30		62		48	42	41			64				43				63	52	45	44	40	
	35		0.06	60	56	45	40	38	31	24		61	49	43		36			63			44		33	67	65	54	47	45	41	35
	30	0	0.07	55	49	40	35	32	28	16	59	54	45	39	37	33	22	61		48	41	39		25	63	59	50	42	41	38	28
	35	0	0.10	57	52	42	37	34	29	20	60	57	47	41	38	34	25	62	59	50	43	40	37	28	64	62	52	44	42	39	31
6	40	0	0.13	58	53	44	39	35	30	21	61	58	49	42	39		27		61	52	44	42	38	30	65	63	54	46	43	40	33
	45	0	0.16	59	55	45	40	36	31		62						29			53		43		33		65		47	45	41	35
	50	_	0.20	59	56	47	42	37	32	24	63		51		41	37					47		40	_	67	67	56	49		42	37
	45		0.07		48	42	38	33	24		61		48	42		30				51		41		25		59	53	46	43	35	28
١,	50	- 6	0.09	60			39	34	24		62		49	43	39		24		58			42				60	54	48	44		29
7	55		0.10	- :	51		40		25	22	63		50	45		31				53		43			66			49	45	37	31
	60		0.12	61 62	53 54		42 43	35 36	25 26	24	63 64		51 52	46 47		31 32			61 62	54 55	48 49	44 44		30 31	66	64	56 57	50 51	46 46	37 38	33 34
	60	_	0.13	59			40	38		20	62		49	43		39		_	58		46	45	44		65	60	54	47	47	47	29
	65		0.02	60	51		41	39	32	22	63		50	44		40		65			47		45			61		48	48	48	30
8	70	_	0.02	60	52					22	63		50	45		41	_		60			47	45	_	67			49		48	_
ľ	75	_	0.02	61				40	34	_	64		51			41	_	_				48	46	_				50		49	33
	80	_	0.03	62	54		43	41	34	24			52	47		42	28			55		48	47	31		64	57	51	50	50	34
	80	_	0.04	58			36	34			61		49	42		35				52		44	38		63		55	48	47	40	29
l	85	0	0.04	58	48	43	37	34	31		61		49	43	41		23	63	58	53	46	45	38	27	64	60	55	49	47	40	29
9	90	0	0.05	59	49	44	37	35	31	20	62	55	50	43	41	35	24	64	58	53	47	45	38	27	65	61	56	49	48	40	30
	95	0	0.06	59	50	44	37	35	31	20	62	56	50	43		36			59		47	45	38		65	62	56	49	48	40	31
$oxed{oxed}$	100	_	0.06	60			38	36	31	22	_	56	50			36			60		47	46	_		66	62	57	50	48	40	31
	90		0.01	60			45	42		22	63	57	53	50	48	37			60		53	52	41		67		59	56	54	44	34
1.0	100	-	0.01	60		48	46	43	30	_	64		54	51		38	_		61		54	53	42	_	67		59	56	55	45	34
10		_	0.01	61				44		_	65		54	52		39	_			57	55	54	43	_		64		57	56	46	_
	120		0.01	63	53 54		47 48	45 45	32 33	24	66	59	55	53		40 41			63		56 56	55 55	44 45		69 69	66	60 61	58 58		47 48	35 36
	120	_	0.01	58			41	37		_	62		52	47		37				56	50	46	41	_		61		53	49	43	32
	140		0.01	60				38		22		57	54	48	45		28		60		52	48	42		67		60	54	51		35
12		- 6	0.01	61				40					55			40		_		59			44		68			55	52	47	36
	180		0.01	61				41			65		56	50		41				60	54	51	45			65	62	56	54	48	
	200		0.01	62	56	52	45	43	36	26		61	57	51		43	31		64		55	52	47	36	69	67	63	57	55	49	38
	150	00	0.02	56	51	45	43	40	36	18	60	56	50	48	45	41	24	62	59	53	51	48	45	28	64	61	55	53	50	47	30
	180	00	0.03	58	53	46	44	41	36	21	62	58	51	49	46	42	27	64	60	54	52	49	45	29	66	63	56	54	51	48	33
14	210	00	0.04	59	54	47	45	42	37	22	63		52	50	47		28	_	62		53	50	46	_	67	64	58	55	52	49	34
	240		0.05	60			46		38		64		53			43				56	54			33		65	58	56			35
	270	_	0.06	62				44	38				54	52		44	_		64		55	52	47	34		66	59	57	54	50	
	200		0.02			43				36	59	53	47	45	44	38	21			50										44	
1.0	240		0.02	57	51	45	43	41	33	18	61	56	49	47	46	39	24	64	59	52	49	49	43	28	65	61	54	51	51	46	30
16			0.03	59	53	46	44	42	34	27	65	58	51	48	4/	41	2/	66 67	61	54	50	50	45	30	6/	63	55	52	52	48	33
	320 360		0.04															67 69													
	390	_	0.05	70	65	62	50 50	43 57	5/	20	72	68	66	62	61	44 5Ω	11	74	60	67	63	62	61	12	75	70	50	64	65	63	12
	460		0.03	73	68	66	62	50	55	41	75	71	68	64	63	60	41	77	72	70	66	65	63	44	78	73	71	67	67	64	43
40			0.04															79													
	600		0.07	77	73	71	66	63	57	47	80	75	73	68	66	62	49	81	76	74	70	68	65	50	82	77	75	71	70	67	51
	670		0.09	79	75	72	67	64	58	48	82	77	75	70	68	63	51	83	78	76	71	70	66	52	84	79	77	72	71	68	53

- Radiated sound is the noise transmitted through the unit casing.
- Min ΔPs is the static pressure drop from the unit inlet to the unit outlet with primary damper full open.
- Sound power levels are in dB, ref 10⁻¹² watts.
- Sound performance based on units lined with standard dual density fiberglass lining.
- All performance based on tests conducted in accordance with ASHRAE 130-2008 and AHRI 880-2008.
- All NC levels determined using AHRI 885-2008 Appendix E. See Terminal Unit Engineering Guidelines.
- Dash (-) in space denotes NC value less than NC10.
- Only highlighted data points are AHRI certified. See page M24 for AHRI Certified Performance Listings.

Single/Dual Duct Terminals

PESV, AESV, DESV / DISCHARGE SOUND PERFORMANCE

		Min													Ban	d So	ound	l Po												
Size	CFM	ΔPs	0						NG		0		<u>0″ ∆</u>	_	- 1	NG		0	-	5″ Δ		- 1	NG	_	0		0″ Δ		- 1	NG
	100							_	NC 17	2	3	4	5	6	7	NC 10	2	3	4	5	6	7	NC 10	2	3	4	5	6	7	NC
	100 125	0.02		53	49	42		35	17 19	63		50 53	46 49		41 43	18 20		58	53 56	49 52		46 47	19 22	65 67	59 62	55 58	51 54	53 55	49 51	20 23
4	150	0.03		60	51	47		36	20	67		56	51		44	23		64	59	54	54	47	24		65	60	56	57	52	24
-4	175	0.04		62	53			37	23	68		58	53		_	24	69		61	56	55	50	25	70		63	58	58	53	28
	200	0.08		64	55			38	24	69		60	55	53	46	27		69	62	58		51	29	71	70	64	60	59	54	30
	150	0.01		50	46	43	41	34	14	62		51	47	47	42	17	64		54		51		19	_	59	57	52	53	49	20
	200	0.02		54	49			36	18			55	51		44	20	67					48	23	68		60	55	55	51	24
5	250	0.03	65	57	52	49	45	38	20	67	62	57	53	51	45	23	69	64	60	56	55	50	25	70	66	62	58	57	53	27
	300	0.04	66	59	54	51	47	39	18	69	64	59	55	53	46	22		67	62	58	56	51	25	71	69	65	60	59	54	28
	350	0.06		61	56			40	20	70		61	57	54	47	24		69	64	60		52	28	73	71	66	61	60	55	30
	300	0.07		57	53	50	45	39	14	64		58	54	51	46	20	67		61	57	54	50	23		67	63	58	56	53	25
	350	0.10		59	54		47		16	66		60		52	_	22	68		63			51	25		69		60		54	28
6	400	0.13		60	56	54		41	17	67		61			_	24	70		64	60		52	28	71			62	59	55	30
	450 500	0.16		62 63	57 59	55 56		42 43	20 21	69	67	64	59 61	54 55	49 50	25 28	71 72	72	66	62 63		53 54	29 31	73 74	74	68 69	63 65	60 61	56 57	33
	450	0.20		58	53	51	47	40	15	67		58	54	51	46	21		67	60	56	54	49			69	62	58	56	52	28
	500	0.07		59	54	52		40				59			47	23		68	62	58		50		70		63	59	57	53	30
7	550	0.1	65			54	49		18			60				24	69	70	63		56							58	54	31
1	600	0.12	65			55	49		20			61		54	48	25	70	71		60	57		30			65	61	59	55	33
	650	0.15	65	63	57	56	50	43		68		62	59	55	49	28	70	72	64	61		53		72	74	66	62	59	55	34
	600	0.02	66	60	55	52	48	40	18	69	66	59	55	52	47	24	71	69	61	56	55	51	28	72	72	63	57	57	54	31
	650	0.02	67	61	56	53	48	41	19			60	56	53	47	25	71	70	62	57	55	51	29	72	73	64	58	57	54	33
8	700	0.02	67	62	56	54			20	70		60	56		_	27		71	63	58		52	_	73		64	59	58	55	34
	750	0.02		63		54	49		20	70		61	57			27		72	63	58	56			73		65	60	58	55	34
	800	0.03	68	64	57	55	50	42	21	71	70	62	58	54		28	72	73	64	59	57		31	74	75	66	60	59	56	34
	800	0.04	67	59	56	53	49	43	17	70		60	57	54	49	21		67	62	59	57	53	24		69	64	60	59	56	27
9	850 900	0.04		60 61	56 57	53 54	49 50	43	18 18	70 71		60 61	57 57	54 55	50 50	22 23		68 68	62	59 59	57	54 54	25 25	73		64 65	61 61	59 59	56 57	28 28
7	950	0.05		61	57	54	50	44		72		61		55	50	23		69				54			71	65	61		57	29
	1000	0.06	69	62	58	55	50	44		72	67	61	58	55	50	24	74	70	64	60		54		75	72	65	62	60	57	30
	900	0.01	69	60	57	55	50	44	19	71	65	61	59	55	50	22	72	68	64	61	58	54	25	73	71	66	63	61	57	29
	1000	0.01	70	61	58	56	50	44	20	72	66	62	60	56	51	23	73	69	65	62	59	55	27	74	72	67	64	61	57	30
10	1100	0.01	70	61	58	57	51	45	20	73	67	63	61	56	51	24	74	70	65	63	60	55	28	75	72	67	65	62	58	30
	1200	0.01	71	62					22	73			61	57		25		71			60				73	68	66		59	31
	1300	0.01	72	63	60	58	52	46	23	74	68	64	62	58	53	25	75	72	67	65	61	_	30	76	74	68	66		59	33
	1200	0.01		62		55	53	46	18		67		59	57	52	24	73	70	65		60			74	72	67	64		59	30
12	1400	0.01		63	61	56	54	47	20	72			61	59	53	27	74	72		63		_				69	65		60	33
12	1600	0.01	70 71	64	62 63	58	55	48 49		73 74		66		59		28	75	73	68		62					70	66		61	34
	1800 2000	0.01	71	67	64	59	55 56	50			72	67 68	64	60 61	56 56	29 30	75 76	75	71	65 66		60		76 77	77	72	67 68		62 63	35 36
	1500	0.02	65	56	56	53	50	44	14	68		61	59	57	53	18	70	66	63	62		59	=	72	68	65	65		62	25
	1800	0.02	66	58	58	53		44	15					58	53	21		67			62						65		63	28
14	2100	0.04	67	59	59	54	51	44	17	70		64	60	58	54	22	72	68	66		63		_	74	71	68	66		63	29
	2400	0.05	68	60	60	54	51	44	18	71			60	59	54	23	73	69	68		63		_	74	72	69	66	66	63	30
	2700	0.06	_	61	61	54	51	45	18	72	67	66	61	59	54	24	74	70	69	64			28	_	73	70	67			31
	2000	0.02	65				52		14				58		51	18			62								63			24
	2400	0.02															72													27
16	2800		68	63	61	57	55	48	20	72	6/	65	61	59	54	24	74	69	66	64	62	57	27	75	/1	68	66	64	60	29
	3200	0.04	70	64	65	58	56	49	21	7.4	70	60	62	61	55	25	75 76	71	70	65	64	59	29	70	74	70	60	65	67	
	3600	0.05													56												68 71			33
	3900 4600	0.03	75	70	67	63	63	5Ω	27	80	76	72	68	68	64	35	82 83	70	76	71	71	67	30	86	79 81	70 78	72	74	70	∆4 //1
40	5300	0.04	77	72	69	65	64	60	30	82	77	74	69	70	65	36	85	80	77	72	73	69	40	87	82	79	74	75	71	42
70	6000	0.00	78	73	70	66	65	61	31	83	78	75	71	71	67	37	86	81	78	73	74	70	41	88	83	80	75	76	73	43
	6700	0.09	79	74	71	67	67	62	33	84	79	76	72	72	68	38	87	82	79	74	75	71	42	89	84	81	76	77	74	45
	0,00	5.57	- /			J,	٠,	-	-	-	. ,				-	-	J,	-	. ,	-				-	-					

- Discharge sound is the noise emitted from the unit discharge into the downstream ductwork.
- Min ΔPs is the static pressure drop from the unit inlet to the unit outlet with primary damper full open.
- Sound power levels are in dB, ref 10-12 watts.
- · Sound performance based on units lined with standard dual density fiberglass lining.
- All performance based on tests conducted in accordance with ASHRAE 130-2008 and AHRI 880-2008.
- All NC levels determined using AHRI 885-2008 Appendix E. See Terminal Unit Engineering Guidelines.
- Dash (-) in space denotes NC value less than NC10.
- Only highlighted data points are AHRI certified. See page M24 for AHRI Certified Performance Listings.

Single/Dual Duct Terminals

PESV, AESV, DESV / HOT WATER COIL CAPACITY, MBH / 1- AND 2-ROW

	Rows/		Head				Α	irflow, cf	m			
	Circuits	gpm	Loss	50	100	150	200	250	300	350	400	450
		1.0	0.50	4.2	5.9	7.0	7.7	8.6	9.4	10.1	10.6	11.2
	One-Row	2.0	1.69	4.4	6.3	7.5	8.3	9.4	10.3	11.1	11.8	12.5
φ	Single	4.0	5.77	4.4	6.5	7.8	8.7	9.8	10.9	11.8	12.6	13.4
4-5	Circuit	5.0	8.59	4.5	6.5	7.8	8.8	9.9	11.0	11.9	12.8	13.6
Sizes 4-5-6		Airside	ΔPs	0.01	0.01	0.02	0.03	0.05	0.07	0.09	0.12	0.14
Siz		1.0	0.24	5.3	8.6	11.0	12.9	14.4	15.6	16.7	17.6	18.4
	Two-Row	3.0	1.66	5.5	9.4	12.5	15.0	17.1	19.0	20.7	22.2	23.5
	Multi-	5.0	4.06	5.6	9.6	12.8	15.5	17.9	19.9	21.8	23.5	25.0
	Circuit	7.0	7.39	5.6	9.7	13.0	15.8	18.2	20.4	22.3	24.1	25.7
		Airside		0.01	0.02	0.04	0.07	0.10	0.13	0.18	0.22	0.27
	Rows/		Head					irflow, cf				
	Circuits	gpm	Loss	100	200	300	400	500	600	700	800	900
		1.0	0.69	6.9	9.2	10.7	12.2	13.4	14.5	15.3	16.1	16.8
	One-Row	2.0	2.34	7.2	9.9	11.7	13.6	15.1	16.4	17.6	18.6	19.5
φ	Single	3.0	4.77	7.4	10.2	12.1	14.1	15.8	17.2	18.5	19.6	20.7
s 7.	Circuit	4.0	7.96	7.4	10.3	12.3	14.4	16.1	17.7	19.0	20.2	21.3
Sizes 7-8		Airside	e ΔPs	0.01	0.02	0.04	0.07	0.10	0.14	0.19	0.24	0.30
0,		1.0	0.33	9.4	14.3	17.6	20.1	21.9	23.4	24.7	25.7	26.6
	Two-Row	3.0	2.32	10.1	16.5	21.2	25.0	28.1	30.8	33.1	35.1	37.0
	Multi-	5.0	5.66	10.3	17.0	22.2	26.3	29.9	32.9	35.6	38.0	40.2
	Circuit	7.0	10.28	10.3	17.2	22.6	27.0	30.7	34.0	36.9	39.5	41.8
		Airside		0.01	0.04	0.08	0.13	0.20	0.27	0.36	0.46	0.56
	Rows/		Head					irflow, cf				4000
	Circuits	gpm	Loss	200	300	400	500	600	700	800	900	1000
	0 0	2.0	0.68	11.7	13.8	15.3	17.0	18.5	19.8	21.0	22.0	23.0
	One-Row	3.0	1.40	12.1	14.4	16.0	18.0	19.7	21.2	22.5	23.7	24.8
-10	Multi-	5.0	3.41	12.5 12.6	15.0 15.1	16.7	18.9 19.1	20.8 21.1	22.4 22.8	23.9	25.3 25.8	26.6
6 s	Circuit	6.0 Airside	4.72	0.01	0.02	16.9	_	0.07	0.10	24.3 0.12	0.15	27.1 0.18
Sizes 9-10						0.04	0.05					
	Two-Row	2.0 4.0	0.65 2.19	17.4 18.5	22.4 24.3	26.3 29.0	29.5 33.0	32.1 36.5	34.4 39.6	36.3 42.3	38.1 44.7	39.6 46.9
	Multi-	6.0	4.43	18.8	25.0	30.1	34.5	38.3	41.7	44.8	47.6	50.1
	Circuit	8.0	7.35	19.0	25.4	30.7	35.3	39.3	42.9	46.2	49.2	51.9
	Circuit	Airside		0.02	0.04	0.07	0.10	0.14	0.18	0.23	0.29	0.35
	Rows/	All Sluc	Head	0.02	0.04	0.07		irflow, cf		0.23	0.27	0.55
	Circuits	gpm	Loss	300	500	700	900	1100	1300	1500	1700	1900
	Circuito	2.0	0.88	14.7	17.3	19.6	21.4	22.9	24.1	25.2	26.0	26.8
	One-Row	3.0	1.81	16.4	19.9	23.0	25.7	28.0	29.9	31.5	32.9	34.2
	Multi-	5.0	4.40	17.5	21.6	25.4	28.7	31.6	34.0	36.2	38.1	39.9
12	Circuit	6.0	6.08	17.9	22.3	26.3	29.9	33.0	35.8	38.2	40.3	42.3
Size 12		Airside		0.01	0.03	0.06	0.09	0.12	0.17	0.21	0.27	0.33
S		2.0	0.84	21.7	27.5	31.1	33.7	35.6	37.1	38.3	39.3	40.2
	Two-Row	4.0	2.79	26.0	35.7	42.8	48.5	53.0	56.9	60.2	63.1	65.6
	Multi-	6.0	5.63	27.1	37.9	46.3	53.0	58.7	63.6	67.8	71.6	75.0
	Circuit	8.0	9.33	27.6	39.0	47.9	55.3	61.6	67.0	71.8	76.1	79.9
		Airside		0.02	0.06	0.11	0.16	0.23	0.32	0.41	0.51	0.62

ELECTRIC COILS

Single/Dual Duct Terminals

SELECTION AND CAPACITIES Recommended Coil Selection Data

The table at the right describes the maximum recommended kW capacities and number of stages available for Titus single duct terminals.

To make a coil selection:

- Check the desired kW is available in desired unit size and number of stages. (Required to prevent excessive watt density and current draw, while taking into account unit size limitations.)
- Check the desired minimum airflow limit is within recommended operating range. (Ensures velocity pressure will be sufficient to close airflow sensing switch.)
- Multiply desired minimum airflow limit by a factor of 0.0142 and check the result is equal to or greater than desired kW. (Limits temperature rise across the coil to 45°F.)

 $kW \le cfm \times 0.0142$

These requirements established to prevent excessive temperature rise caused by low airflow and/or oversized coils. Minimum airflow limits must be within recommended ranges to ensure proper operation and long service life. For optimum diffuser performance and maximum thermal comfort, coil discharge temperatures should not be more than 15°F above desired room temperatures. For proper coil operation it is recommended that coil discharge temperatures do not to exceed 100°F.

PESV, AESV, DESV / APPLICATION DATA (LYNERGY HEAT)

Inlet Size	Heating cfm Range		8V nase lange	1 Ph	0V nase lange	1 Pł	7V nase lange	3 Pł	8V nase lange	3 Ph	0V nase lange
0.00		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
4	55-225	0.5	3.0	1.0	3.0	1.0	3.0	1.5	3.0	2.5	3.0
5	85-350	0.5	5.0	1.0	5.0	1.0	5.0	1.5	5.0	2.5	5.0
6	105-500	0.5	7.5	1.0	7.5	1.0	7.5	1.5	7.5	2.5	7.5
7	135-650	0.5	9.5	1.0	9.5	1.0	9.5	1.5	9.5	2.5	9.5
8	190-900	0.5	9.5	1.0	11.0	1.0	13.0	1.5	10.5	2.5	13.0
9	225-1050	0.5	9.5	1.0	11.0	1.0	13.0	1.5	10.5	2.5	16.0
10	300-1400	0.5	9.5	1.0	11.0	1.0	13.0	1.5	10.5	2.5	21.0
12	425-2000	0.5	9.5	1.0	11.0	1.0	13.0	1.5	10.5	2.5	25.0
14	575-3000	1.0	9.5	1.0	11.0	1.5	13.0	1.5	10.5	3.0	25.0
16	750-4000	1.0	9.5	1.0	11.0	1.5	13.0	1.5	10.5	3.0	25.0
24x16	1800-8000	1.0	9.5	1.0	11.0	1.5	13.0	1.5	10.5	4.0	25.0

Note: The Titus 480V, 3-phase electric heat configuration is 4-wire wye. Contact your Titus representative for other configuration options.

Useful formulas:

$$kW = \ \frac{cfm \ x \ \Delta T}{3160} \quad or \quad \Delta T = \frac{kW \ x \ 3160}{cfm} \quad or \quad cfm = \frac{kW \ x \ 3160}{\Delta T}$$

Where ΔT = air temperature rise.

APPENDIX D

HAZARDOUS MATERIALS

REPORT DATE; 9/6/2010

HOMOGENEOUS AREAS

ASBESTOS CONTENT: C - Chrysotile, A - Amosite, CR - Crocidolite, TR - Tremolite, AC - Actinolite, AN - Anthophylite, ASMD - Assumed, NAD - None Detected 100152

Building Number: 022

Client Number:

Building Name:

Building 22 - Education Building

Client Name:

Lebanon VA Medical Center

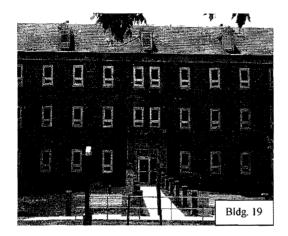
HOMO AREA	MATERIAL	LOCATION	APPROX AMOUNT	CLASSIFICATION	FRIABILITY	ASBESTOS CONTENT	SAMPLE NUMBERS	INSPECTION DATE
01	Pipe Insulation	1st Floor Kitchen Storage Room	25 Lineal Feet	THERMAL SYSTEM INSULATION	FRIABLE	Assumed		8/19/2010
02	Pipe Fitting Insulation	1st Floor Kitchen Storage Room	8 Fittings	THERMAL SYSTEM INSULATION	FRIABLE	Assumed	м	8/19/2010
03	Transite Wall Panels	3rd Floor Mechanical Chase	50 Square Feet	MISCELLANEOUS MATERIAL	NON-FRIABLE	Assumed	-	8/19/2010
04	9x9 Floor Tile	1st Floor Storage Room	220 Square Feet	MISCELLANEOUS MATERIAL	NON-FRIABLE	Assumed	-	8/19/2010
05	9x9 Floor Tile Mastic	1st Floor Storage Room	220 Square Feet	MISCELLANEOUS MATERIAL	NON-FRIABLE	Assumed		8/19/2010

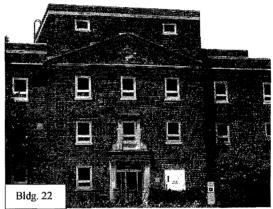
REPORT DATE: 9/5/2010

ASBESTOS CONTENT: C - Chrysotile, A - Amosite, CR - Crocidolite, TR - Tremolite, AC - Actinolite, AN - Anthophylite, ASMD - Assumed, NAD - None Detected

Building Number: 019

Client Number: 100152


Building Name


Builain	g Name: Building 19- Office Build	ing Client	Name: Leband	on VA Medical Center			•	
HOMO AREA	MATERIAL	LOCATION	APPROX AMOUNT	CLASSIFICATION	FRIABILITY	ASBESTOS CONTENT	SAMPLE NUMBERS	INSPECTION DATE
01	Pipe Insulation	1st Floor Storage Closet & 3rd Floor Pipe Chase Area	25 Lineal Feet	THERMAL SYSTEM INSULATION	FRIABLE	Assumed		8/19/2010
02	Pipe Fitting Insulation	1st Floor Storage Closet & 3rd Floor Pipe Chase Areas	5 Fittings	THERMAL SYSTEM INSULATION	FRIABLE	Assumed	*•	8/19/2010
03	9"x9" Floor Tile (Miscellaneous Colors)	Miscellaneous Areas Throughout Building	9900 Square Feet	MISCELLANEOUS MATERIAL	NON-FRIABLE	Assumed	-	8/19/2010
04 .	Floor Tile Mastic (Under 9x9 Floor Tile)	1st Floor Offices 136A & 137A	10200 Square Feet	MISCELLANEOUS MATERIAL	NON-FRIABLE	Assumed	• .	8/19/2010

ASBESTOS HAZARD ASSESSMENT REPORT

IMPROVE EMERGENCY CACHE

VAMC LEBANON, PA

CONTRACT NO. VA24412R0058 PROJECT NO. 595-11-127

Prepared for:

Department of Veterans Affairs Medical Center Lebanon, PA

Prepared By:

Environmental Solutions Group, Inc. 4142 Ogletown-Stanton Road, Suite 226 Newark, DE 19713

August 2012

1.0 INTRODUCTION

Environmental Solutions Group, Inc. (ESG) was contracted by Miller-Remick, LLC to provide asbestos investigation and abatement oversight services in connection with Contract No. VA244-12-R-0058, Project No. 595-11-127, Improve Emergency Cache. This project involves renovations in portions of two buildings. The two buildings are building 19, having approximately 6,600 square feet of space and building 22, having approximately 14,000 square feet of space.

Specific SOW items that deal with these services are:

- Review VA-provided sampling data and interview station personnel regarding asbestos containing materials
- Perform a visual site inspection and collect potential bulk samples as per USEPA guidance
- Have potential samples analyzed using USEPA-approved analysis
- Prepare an Assessment Report that identifies the types and location of ACM found
- Provide quantity and cost estimates for all asbestos to be abated
- Provide CAD drawings showing critical sample locations and containment to be constructed during abatement
- Prepare Asbestos Abatement Specifications using the VA Master Specifications
- Assist the VA in selection of an ACM abatement Company
- Provide construction period services

Page 2-1
August 2012

2.0 SCOPE OF WORK

As part of contractual requirements described in Section One, this report describes:

- 1. The methodology used for the collection of potential ACM samples within the spaces in the project area
- 2. The results of ACM laboratory analyses of the collected samples
- 3. A description of the impacted areas within the project area
- 4. A summary of the amount of ACM in each impacted space
- 5. An estimate of the cost for ACM abatement

2.1 ACM Bulk Sampling

Potential ACM samples were collected in accordance with USEPA guidelines and by a Pennsylvania-AHERA certified technician. Once homogeneous materials are identified, the USEPA recommends the following sampling from these materials:

- three (3) samples from less than 1,000 square feet
- five (5) samples from 1,000 to 5,000 square feet
- seven (7) samples from greater than 5,000 square feet
- three (3) samples from homogeneous thermal materials
- at least one sample from miscellaneous materials

If it is determined that additional potential ACM samples must be collected, they will be collected in accordance with 40 CFR Part 61, National Emission Standards for Hazardous Air Pollutants; (HESHAPS) Asbestos.

Page 2-2 August 2012

2.2 Segregation of the Project Area

There were minimal historical ACM sampling data available, therefore the entire project area was sampled for potential ACM using USEPA guidelines. However, ESG representatives did not perform destructive sampling.

In building 19, eight (8) different Homogeneous Areas (suspect ACM) were identified and in building 22, fourteen (14) were identified. A total of forty seven (47) bulk samples were collected from various building materials in the two buildings. Figures (not to scale) showing the sampling locations are included in Attachment A, and the Homogeneous Identification Reports are shown in Attachment B.

Page 3-1 August 2012

3.0 ASBESTOS CONTAINING MATERIAL SAMPLING ANALYSIS

A total of forty seven (47) potential ACM samples were collected during the July 2012, site visit and sampling event. The sample Chain of Custody and Laboratory Analytical Data is included in Attachment C. These samples were transported to a NVLAP qualified laboratory for analysis. USEPA Analysis Method EPA: 600/M4-82-020 was used to analyze the samples. By definition, any material containing more than 1% by volume of asbestos fibers is classified as ACM and has been included for abatement. The Certificate of Analysis for the samples is included in Attachment D.

Asbestos insulated pipes may exist within wall cavities specifically in bathroom, kitchen and heater pipe riser areas. Wall block demolition will be needed to access these areas.

3.1 Homogeneous Identification Reports

The Homogeneous Identification Report (HIR) shows the homogeneous identification, corresponding room number, the type of potential ACM sampled, the percent of asbestos in the sample (if any) and the amount of each material in square feet (sf) or linear feet (lf).

3.2 Chain of Custody and Laboratory Data

The Chain of Custody includes the sample number for each sample, the homogeneous area of the sample, and whether the sample was analyzed as positive (>1%) asbestos fibers.

Page 4-1 August 2012

4.0 QUANTITIES TO BE ABATED

A total of forty seven (47) samples were collected as part of this investigation and the quantities of materials which have greater than 1% asbestos are shown in the table below.

	Building No. 19	
Homogeneous Area	Description	Length/Volume
C2-1	Floor Tile, 9X9", black w/off	64 sf
	white & green swirls	

Notes:

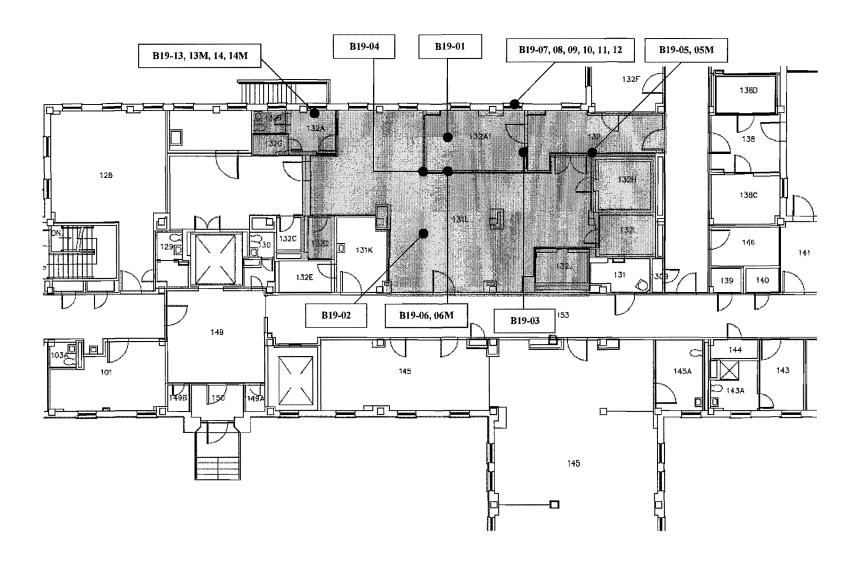
sf= square feet

Page 6-1 August 2012

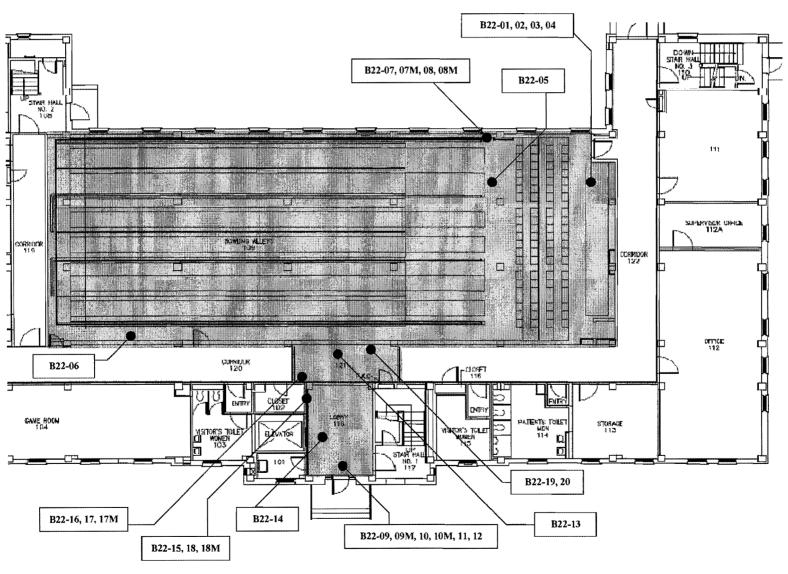
6.0 PRELIMINARY ABATEMENT SCHEDULE

6.1 **Pre-Abatement Activities**

Asbestos Containing Material abatement cannot proceed until each area is prepared for abatement activities. This means that all stored or other materials are removed from each abatement area and wherever necessary and temporary lighting is installed.

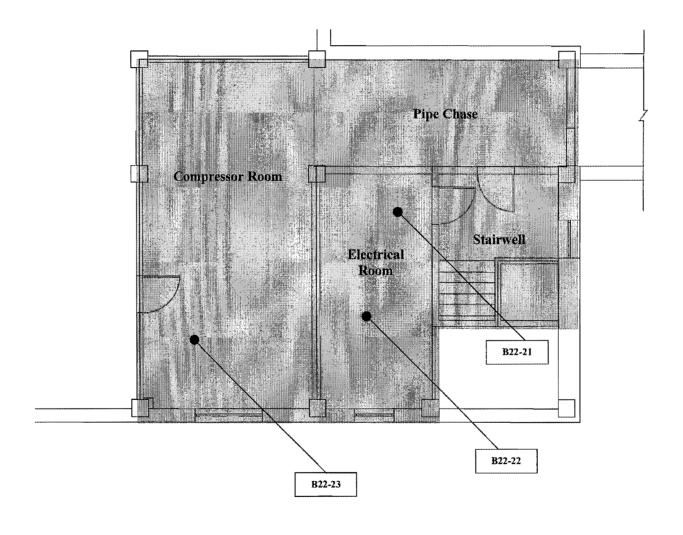

Building Sub-Systems Impact 6.2

Since the only building system to be abated is the floor tile in Room 132A of Building 19, the abatement is not anticipated to impact any other building systems.


August 2012

ATTACHMENT A FIGURES WITH SAMPLE LOCATIONS

FIRST FLOOR PLAN / SAMPLE LOCATION MAP



FIRST FLOOR PLAN / SAMPLE LOCATION MAP

Drawing Not to Scale - For Reference Only

BASEMENT FLOOR PLAN / SAMPLE LOCATION MAP

August 2012

ATTACHMENT B HOMOGENEOUS AREA IDENTIFICATION

HOMOGENEOUS AREA IDENTIFICATION

HOMO AREA ID.	SAMPLE NO.	DESCRIPTION	F	NF	QUANTITY	SAMPLES	POS
C1-1	B19-01, 02	2' X 4' White random ceiling tile		х		2	
C3-1	B19-03, 04	Drywall	Х			2	
C3-2	B19-05, 06	6" Brown cove base molding		х		2	
C3-2M	B19-05M, 06M	C3-2 Mastic		х		2	
A5-1S	B19-07, 08, 09	Skim coat plaster	Х			3	
A5-1R	B19-10, 11, 12	Rough coat plaster		х		3	
C2-1	B19-13, 14	9" X 9" Black with off white and green swirls floor tile		х	64 SF	2	х
C2-1M	B19-13M, 14M	C2-1 Mastic		Х		2	
			ļ				
			-				
		JAMES STATE OF THE					
			-				
			<u> </u>				

HOMOGENEOUS AREA IDENTIFICATION

HOMO AREA ID.	SAMPLE NO.	DESCRIPTION	F	NF	QUANTITY	SAMPLES	POS
C2-1	B22-01, 02	12" X 12" Dark gray mottled floor tile		х		2	
C2-1M	B22-03, 04	C2-1 Mastic		х		2	
C1-1	B22-05, 06	2' X 2' White textured with pinholes ceiling tile	х			2	
C3-1	B22-07, 08	4" Beige cove base molding		Х		2	
C3-1M	B22-07M, 08M	C3-1 Mastic		х		2	
C2-2	B22-09, 10	12" X 12" Beige mottled floor tile		х		2	
C2-M	B22-09M, 10M	C2-2 and C2-3 Mastic		х		2	
C2-3	B22-11, 12	12" X 12" Green mottled floor tile		х		2	
C1-2	B22-13, 14	2' X 4' E-W pattern ceiling tile	х			2	
C3-2	B22-15, 16	Beige and white leaf pattern wallpaper		х		2	
C3-3	B22-17, 18	6" Light brown cove base molding		х		2	
С3-3М	B22-17M, 18M	C3-3 Mastic		х		2	
C3-4	B22-19, 20	Drywall	х			2	
A1-1	B22-21, 22, 23	Sprayed on insulation	х			3	

Attachment C August 2012

ATTACHMENT C **CHAIN OF CUSTODY AND** ANALYTICAL DATA

CHAIN OF CUSTODY

JOB NUMBER <u>12-036-1</u>			
LABORATORY: NAME	EMSL Analytical, Inc.	LAB#	101048-0
ANALYSIS: 🔲 PLM 🔲 SEM			
	Christa Knon		
SAMPLES COLLECTED BY (Signature)	Transac F	#035177	
SAMPLES DISPATCHED TO LAB BY	EAA	DATE 07/19/12	TIME 1720
SAMPLES RECEIVED BY	EMSL Analytical, Inc.	DATE 07/20/12	TIME 0940
SAMPLES ANALYSIS BY	C. Walker / N. Stalter	DATE 07/20/12	TIME 1915
ANALYSIS RESULTS TO	EAA	DATE 07/20/12	TIME 0810
SAMPLES STORED BY	EMSL Analytical, Inc.	DATE 07/20/12	TIME 0830

BULK SAMPLE LOG

SAMPLE#	HOMOGENEOUS	FUNCTIONAL	SAMPLE LOCATION	FRIA	ABLE	ASBE	STOS
	AREA I. D.	SPACE		Yes	No	Yes	No
B19-01	C1-1	132A1	Ceiling	х			х
B19-02	C1-1	131L	Ceiling	х			х
B19-03	C3-1	132A1	Wall	x			х
B19-04	C3-1	131L	Wali	х			х
B19-05	C3-2	132	Cove base		х		х
B19-05M	C3-2M	132	Cove base		х		х
B19-06	C3-2	131L	Cove base		х		х
B19-06M	C3-2M	131L	Cove base		х		х
B19-07	A5-1S	132A1	Above window	х			Х
B19-08	A5-1S	132A1	Above window	х			х
B19-09	A5-1S	132A1	Above window	х			х
B19-10	A5-1R	132A1	Above window		X		х
B19-11	A5-1R	132A1	Above window		х		Х
B19-12	A5-1R	132A1	Above window		х		Х
B19-13	C2-1	132A	Floor		х	х	
B19-13M	C2-1M	132A	Floor		х		Х
B19-14	C2-1	132A	Floor		х	х	
B19-14M	C2-1M	132A	Floor		х		х

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (800) 220-3675 / (856) 786-5974

http://www.emsl.com

cinnasblab@EMSL.com

EMSL Order:

041219103

CustomerID: CustomerPO: ENVA55 CK #10915

ProjectID:

Christa Knorr

Environmental Abatement Associates, Inc.

143 West Main Street

Phone: Fax:

(570) 779-4242

Received:

(570) 779-0929 07/20/12 9:40 AM

Analysis Date:

7/20/2012

Collected:

7/18/2012

Plymouth, PA 18651

Project: 12-036-1/ Lebanon VA Medical Center-Bidg 19 Improve Emergency Cache

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Ast	<u>iestos</u>	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
B19-01	132A1 - ceiling tile	Gray/White	45%	Cellulose	20% Non-fibrous (other)	None Detected	
041219103-0001		Fibrous Heterogeneous	35%	Min. Wool			
B19-02	131L - ceiling tile	Gray/White	45%	Cellulose	20% Non-fibrous (other)	None Detected	
041219103-0002		Fibrous Heterogeneous	35%	Min. Wool			
B19-03	132A1 - drywall	Brown/White	15%	Cellulose	85% Non-fibrous (other)	None Detected	
041219103-0003		Fibrous Heterogeneous					
B19-04	131L - drywall	Brown/White	15%	Cellulose	85% Non-fibrous (other)	None Detected	
041219103-0004		Fibrous Heterogeneous					
B19-05-Cove Base	132 - covebase	Brown			100% Non-fibrous (other)	None Detected	
041219103-0005		Non-Fibrous Heterogeneous					
B19-05-Mastic	132 - covebase	Beige			100% Non-fibrous (other)	None Detected	
041219103-0005A		Non-Fibrous Heterogeneous					
B19-06-Cove Base	131L - covebase	Brown		<u> </u>	100% Non-fibrous (other)	None Detected	
041219103-0006		Non-Fibrous Heterogeneous					
B19-06-Mastic	131L - covebase	Beige	<u></u>		100% Non-fibrous (other)	None Detected	
041219103-0006A		Non-Fibrous Heterogeneous					

Analyst(s)

Christina Walker (10) Nancy Statter (8)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AlHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675 / (856) 786-5974

http://www.emsl.com

cinnasblab@EMSL.com

EMSL Order:

041219103

CustomerID: CustomerPO: ENVA55 CK #10915

ProjectID:

Attn: Christa Knorr

Environmental Abatement Associates, Inc.

143 West Main Street

Phone: Fax:

(570) 779-4242

Received:

(570) 779-0929 07/20/12 9:40 AM

Analysis Date:

7/20/2012

Collected:

Plymouth, PA 18651

7/18/2012

Project: 12-036-1/ Lebanon VA Medical Center-Bldg 19 Improve Emergency Cache

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			Non-	<u>Asbestos</u>	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
B19-07	132A1 - skim coat	White		100% Non-fibrous (other)	None Detected
041219103-0007	plaster	Non-Fibrous Heterogeneous			
B19-08	132A1 - skim coat	White		100% Non-fibrous (other)	None Detected
041219103-0008	plaster	Non-Fibrous Heterogeneous			
B19-09	132A1 - skim coat plaster	White		100% Non-fibrous (other)	None Detected
041219103-0009		Non-Fibrous Heterogeneous			
B19-10	132A1 - rough coat	Tan		100% Non-fibrous (other)	None Detected
041219103-0010	plaster	Non-Fibrous Heterogeneous			
B19-11	132A1 - rough coat	Tan		100% Non-fibrous (other)	None Detected
041219103-0011	plaster	Non-Fibrous Heterogeneous		_	
B19-12	132A1 - rough coat	Tan		100% Non-fibrous (other)	None Detected
041219103-0012	plaster	Non-Fibrous Heterogeneous			
B19-13-Floor Tile	132A - floor tile	Black		95% Non-fibrous (other)	5% Chrysotile
041219103-0013		Non-Fibrous Heterogeneous			
B19-13-Mastic	132A - floor tile	Black		100% Non-fibrous (other)	None Detected
041219103-0013A		Non-Fibrous Heterogeneous			

Analyst(s)

Christina Walker (10) Nancy Stalter (8)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no recommends gravimetric reduction prior to analysis. Into report earlies only to the samples of the sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AJHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

200 Route 130 North, Cinnaminson, NJ 08077

(800) 220-3675 / (856) 786-5974 Phone/Fax:

http://www.emsl.com cinnasblab@EMSL.com EMSL Order:

041219103

CustomerID: CustomerPO:

ENVA55 CK #10915

ProjectID:

Attn: Christa Knorr

Environmental Abatement Associates, Inc.

143 West Main Street

Phone: Fax:

(570) 779-4242

Received:

(570) 779-0929 07/20/12 9:40 AM

Analysis Date:

7/20/2012

Collected:

Plymouth, PA 18651

7/18/2012

Project: 12-036-1/ Lebanon VA Medical Center-Bldg 19 Improve Emergency Cache

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			Non-Asbestos			<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
B19-14-Floor Tile	132A - floor tile	Black			95% Non-fibrous (other)	5% Chrysotile
041219103-0014		Fibrous Heterogeneous				
B19-14-Mastic	132A - floor tile	Black			100% Non-fibrous (other)	None Detected
041219103-0014A		Non-Fibrous Heterogeneous				

Analyst(s)

Christina Walker (10) Nancy Stalter (8)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AlHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

CHAIN OF CUSTODY

JOB NUMBER <u>12-036-1</u>			
LABORATORY: NAME	EMSL Analytical, Inc.	LAB#	101048-0
ANALYSIS: 🔳 PLM 🔲 SEM			
SAMPLES COLLECTED BY (Signature)	Christa Knon	#035177	
SAMPLES DISPATCHED TO LAB BY	EAA	DATE 07/19/12	TIME 1720
SAMPLES RECEIVED BY	EMSL Analytical, Inc.	DATE 07/20/12	TIME 0940
SAMPLES ANALYSIS BY	C. Walker / N. Stalter	DATE 07/20/12	TIME 1600
ANALYSIS RESULTS TO	EAA	DATE 07/21/12	TIME 0805
SAMPLES STORED BY	EMSL Analytical, Inc.	DATE 07/21/12	TIME 0830

BULK SAMPLE LOG

SAMPLE#	HOMOGENEOUS AREA I. D.	FUNCTIONAL SPACE	SAMPLE LOCATION	FRIABLE Yes No		ASBE Yes	STOS No
B22-01	· C2-1	109 – Maintenance Storage	Floor		х		х
B22-02	C2-1	109 – Maintenance Storage	Floor		х		Х
B22-03	C2-1M	109 – Maintenance Storage	Floor		Х		Х
B22-04	C2-1M	109 - Maintenance Storage	Floor		Х		Х
B22-05	C1-1	109 – Bowling Alleys	Ceiling	х			х
B22-06	C1-1	109 – Bowling Alleys	Ceiling	х			х
B22-07	C3-1	109 – Bowling Alleys	Cove base		х		х
B22-07M	C3-1M	109 – Bowling Alleys	Cove base		х		Х
B22-08	C3-1	109 – Bowling Alleys	Cove base		х		Х
B22-08M	C3-1M	109 – Bowling Alleys	Cove base		х		Х
B22-09	C2-2	Lobby 118	Floor		Х		Х
B22-09M	C2-M	Lobby 118	Floor		Х		Х
B22-10	C2-2	Lobby 118	Floor		х		х
B22-10M	C2-M	Lobby 118	Floor		х		х
B22-11	C2-3	Lobby 118	Floor		х		х
B22-12	C2-3	Lobby 118	Floor		х		х
B22-13	C1-2	Corridor 121	Ceiling	х			х
B22-14	C1-2	Lobby 118	Ceiling	х		***************************************	х
B22-15	C3-2	Lobby 118	Wall	X			х
B22-16	C3-2	Corridor 121	Wall		х		х

SAMPLE#	HOMOGENEOUS AREA I. D.	FUNCTIONAL SPACE	SAMPLE LOCATION	FRIA Yes	ABLE No	ASBE Yes	STOS No
B22-17	C3-3	Corridor 121	Cove base		х		х
B22-17M	C3-3M	Corridor 121	Cove base		х		Х
B22-18	C3-3	Lobby 118	Cove base		х		х
B22-18M	C3-3M	Lobby 118	Cove base		х		Х
B22-19	C3-4	Corridor 121	Wall	Х			х
B22-20	C3-4	Corridor 121	Wall	Х			х
B22-21	A1-1	Electrical Room	Ceiling beam	Х			Х
B22-22	A1-1	Electrical Room	Ceiling beam	х			х
B22-23	A1-1	Compressor Room	Ceiling beam	Х			х
		•					

		AD					:

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675 / (856) 786-5974

Project 12-036-1/ Lebanon VA Medical Center-Bldg 22 Improve Emergency Cache

http://www.emsl.com cinnasblab@EMSL.com EMSL Order:

041219104

CustomerID: CustomerPO: ENVA55 CK #10915

ProjectID:

Attn: Christa Knorr

Environmental Abatement Associates, Inc.

143 West Main Street

Phone: Fax:

(570) 779-4242

Received:

(570) 779-0929 07/20/12 9:40 AM

Analysis Date:

7/20/2012

Collected:

7/18/2012

Plymouth, PA 18651

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			Non-Asi	<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
B22-01	109 maintenance	Gray		100% Non-fibrous (other)	None Detected
041219104-0001	storage - floor tile	Non-Fibrous Heterogeneous			
			Recommend TEM		
B22-02	109 maintenance	Gray		100% Non-fibrous (other)	None Detected
041219104-0002	storage - floor tile	Non-Fibrous Heterogeneous			
			Recommend TEM		
B22-03	109 maintenance	Yellow		100% Non-fibrous (other)	None Detected
041219104-0003	storage - floor tile mastic	Non-Fibrous Heterogeneous			
B22-04	109 maintenance	Yellow		100% Non-fibrous (other)	None Detected
041219104-0004	storage - floor tile mastic	Non-Fibrous Heterogeneous			
B22-05	109 bowling	Gray/White	45% Cellulose	20% Non-fibrous (other)	None Detected
041219104-0005	alleys - ceiling tile	Fibrous Heterogeneous	35% Min. Wool		
B22-06	109 bowling	Gray/White	45% Cellulose	20% Non-fibrous (other)	None Detected
041219104-0006	alleys - ceiling tile	Non-Fibrous Heterogeneous	35% Min. Wool		
B22-07-Cove Base	109 bowling	Beige		100% Non-fibrous (other)	None Detected
041219104-0007	alleys - covebase	Non-Fibrous Heterogeneous			
B22-07-Mastic	109 bowling	Yellow		100% Non-fibrous (other)	None Detected
041219104-0007A	alleys - covebase	Non-Fibrous Heterogeneous			

Analyst(s)

Christina Walker (15) Nancy Statter (14)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-finable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AlHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

200 Route 130 North, Cinnaminson, NJ 08077

(800) 220-3675 / (856) 786-5974 Phone/Fax:

http://www.emsl.com cinnasblab@EMSL.com EMSL Order:

041219104

CustomerID: CustomerPO: ENVA55 CK #10915

ProjectID:

Attn: Christa Knorr

Environmental Abatement Associates, Inc.

143 West Main Street

Phone: Fax:

(570) 779-4242

Received:

(570) 779-0929 07/20/12 9:40 AM

Analysis Date:

7/20/2012

Collected:

7/18/2012

Plymouth, PA 18651

Project: 12-036-1/ Lebanon VA Medical Center-Bldg 22 Improve Emergency Cache

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Asbestos	<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrou	s % Non-Fibrous	% Type	
B22-08-Cove Base		Beige		100% Non-fibrous (other)	None Detected	
041219104-0008	alleys - covebase	Non-Fibrous Heterogeneous				
B22-08-Mastic	109 bowling	Yellow		100% Non-fibrous (other)	None Detected	
041219104-0008A	alleys - covebase	Non-Fibrous Heterogeneous				
B22-09-Floor Tile	Lobby 118 - beige	Beige		100% Non-fibrous (other)	None Detected	
041219104-0009	floor tile	Non-Fibrous Heterogeneous				
B22-09-Mastic	Lobby 118 - beige	Yellow		100% Non-fibrous (other)	None Detected	
041219104-0009A	floor tile	Non-Fibrous Heterogeneous				
B22-10-Floor Tile	Lobby 118 - beige			100% Non-fibrous (other)	None Detected	
041219104-0010	floor tile	Non-Fibrous Heterogeneous				
B22-10-Mastic	Lobby 118 - beige	Yellow		100% Non-fibrous (other)	None Detected	
041219104-0010A	floor tile	Non-Fibrous Heterogeneous				
B22-11	Lobby 118 - green	Green		100% Non-fibrous (other)	None Detected	
041219104-0011	floor tile	Non-Fibrous Heterogeneous				
B22-12	Lobby 118 - green	Green		100% Non-fibrous (other)	None Detected	
041219104-0012	floor tile	Non-Fibrous Heterogeneous				

Analyst(s)

Christina Walker (15) Nancy Stalter (14)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AlHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

200 Route 130 North, Cinnaminson, NJ 08077 (800) 220-3675 / (856) 786-5974

http://www.emsl.com

cinnasblab@EMSL.com

EMSL Order:

041219104

CustomerID: CustomerPO: ENVA55 CK #10915

ProjectID:

Attn: Christa Knorr

Environmental Abatement Associates, Inc.

Fax:

Phone:

(570) 779-4242 (570) 779-0929

143 West Main Street

Received:

07/20/12 9:40 AM

Analysis Date:

7/20/2012

Collected:

7/18/2012

Plymouth, PA 18651

Project: 12-036-1/ Lebanon VA Medical Center-Bldg 22 Improve Emergency Cache

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

				Non-Asb	<u>estos</u>	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
B22-13	Corridor 121 -	Gray/White	45%	Cellulose	20% Non-fibrous (other)	None Detected
041219104-0013	ceiling tile	Fibrous Heterogeneous	35%	Min. Wool		
B22-14	Lobby 118 - ceiling	Gray	45%	Cellulose	20% Non-fibrous (other)	None Detected
041219104-0014	tile	Fibrous Heterogeneous	35%	Min. Wool		
B22-15	Lobby 118 -	White	85%	Cellulose	15% Non-fibrous (other)	None Detected
041219104-0015	walipaper	Fibrous Heterogeneous				
B22-16	Corridor 121 -	White	85%	Cellulose	15% Non-fibrous (other)	None Detected
041219104-0016	wallpaper	Fibrous Heterogeneous				·
B22-17-Cove Base	Corridor 121 -	Gray			100% Non-fibrous (other)	None Detected
041219104-0017	covebase	Non-Fibrous Heterogeneous				
B22-17-Mastic	Corridor 121 -	Yellow			100% Non-fibrous (other)	None Detected
041219104-0017A	covebase	Non-Fibrous Heterogeneous			_	
B22-18-Cove Base	Lobby 118 -	Gray			100% Non-fibrous (other)	None Detected
041219104-0018	covebase	Non-Fibrous Heterogeneous				
B22-18-Mastic	Lobby 118 -	Yellow			100% Non-fibrous (other)	None Detected
041219104-0018A	covebase	Non-Fibrous Heterogeneous				

Analyst(s)

Christina Walker (15) Nancy Stalter (14)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AlHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (800) 220-3675 / (856) 786-5974

http://www.emsl.com

cinnasblab@EMSL.com

EMSL Order:

041219104

CustomerID: CustomerPO: ENVA55 CK #10915

ProjectID:

Attn: Christa Knorr

Environmental Abatement Associates, Inc.

143 West Main Street

Phone: Fax:

(570) 779-4242

Received:

(570) 779-0929 07/20/12 9:40 AM

Analysis Date:

7/20/2012

Plymouth, PA 18651

Collected:

7/18/2012

Project: 12-036-1/ Lebanon VA Medical Center-Bldg 22 Improve Emergency Cache

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 and/or EPA 600/M4-82-020 Method(s) using Polarized Light Microscopy

			Non-As	<u>bestos</u>	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
B22-19	Corridor 121 -	Tan/White	15% Cellulose	83% Non-fibrous (other)	None Detected
041219104-0019	drywall	Fibrous Heterogeneous	2% Glass		
B22-20	Corridor 121 -	Tan/White	15% Cellulose	83% Non-fibrous (other)	None Detected
041219104-0020	drywall	Fibrous Heterogeneous	2% Glass		
B22-21	Electrical room -	Brown	20% Cellulose	80% Non-fibrous (other)	None Detected
041219104-0021	sprayed on	Fibrous Heterogeneous			
B22-22	Electrical room -	Brown	25% Cellulose	75% Non-fibrous (other)	None Detected
041219104-0022	sprayed on	Fibrous Heterogeneous			
B22-23	Compressor	Brown	25% Cellulose	75% Non-fibrous (other)	None Detected
041219104-0023	room - sprayed on	Fibrous Heterogeneous			

Analyst(s)

Christina Walker (15) Nancy Stalter (14)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AlHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

ATTACHMENT D CERTIFICATE OF ANALYSIS

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 101048-0

EMSL Analytical, Inc.

Cinnaminson, NJ

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

BULK ASBESTOS FIBER ANALYSIS

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2012-07-01 through 2013-06-30

Effective dates

Man R. Mall

For the National Institute of Standards and Technology

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 Mr. Stephen Siegel, CIH

Phone: 800-220-3675 Fax: 856-786-5973

E-Mail: ssiegel@emsl.com URL: http://www.emsl.com

BULK ASBESTOS FIBER ANALYSIS (PLM)

NVLAP LAB CODE 101048-0

NVLAP Code Designation / Description

EPA-600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation

Samples

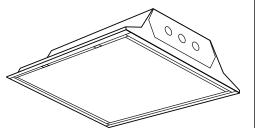
18/A01

2012-07-01 through 2013-06-30

Effective dates

Man R. Mall

For the National Institute of Standards and Technology


NVLAP-01S (REV. 2005-05-19)

APPENDIX E

ELECTRICAL

2' × 2' Wet Location Lensed Troffer / 2, 3, or 4-Lamp T5, T5HO, T8, TT, U-Bent

FEATURES

- Wet label housing troffer
- Gasketed to provide additional seal between door, lens, and housing
- · Mitered corners standard on door frame
- · Mechanical light trap
- All metal parts are white powder coat, painted after fabrication
- UL listed 1598 for wet location covered ceiling applications
- Rotary action cam latches. Smooth operating for secure shielding retention
- Corner hinging for easy insertion and removal of shielding frame
- Housing ends are secured by unique corner interlock and screws
- Metal to metal light leak protection on all four sides of shielding frame
- Rotary lock lampholders for positive lamp contact
- Heat sink embossments behind ballasts for cooler operation and longer life

PROJECT INFORMATION Project Name Catalog No. Date

FLANGED FEATURES

Four adjustable Uni-Lugs for quick easy installation. Optional plaster frames available for individual or row mounting.

HOUSING

Heavy gauge steel. Die formed for extra rigidity. Designed for installation in standard inverted tee grid ceilings.

BALLASTS

Thermally protected, automatic resetting, Class P, high power factor, sound rated A, unless otherwise specified. CEE NEMA Premium compliant.

ELECTRICAL

Standard class "P," thermally protected, autoresetting HPF ballast, sound rated A. CEE NEMA Premium compliant. All ballast leads extend a minimum of 6" through access location. NEC/CEC-compliant ballast disconnect is standard.

FINISH

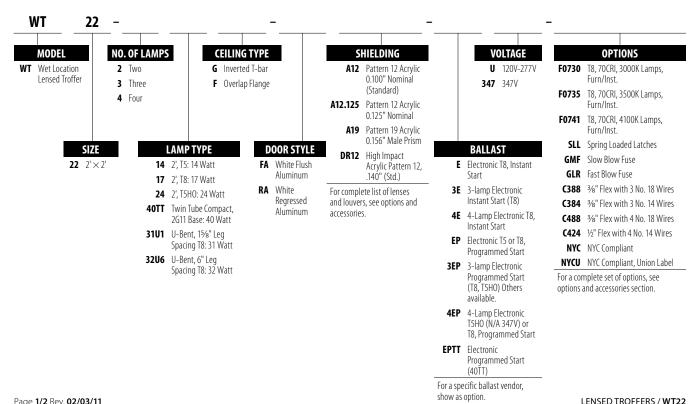
All metal parts are processed with a five phase phosphate bonding treatment. Grid units are pre-painted with high glass baked white enamel, 86% reflective. Flanged units are painted after

fabrication with a polyester powder coat, reflectance of 90%.

SHIELDING

100% prismatic acrylic, extruded and rollembossed, diagonally oriented female prisms, unless otherwise specified.

FLANGED UNIT INSTALLATION

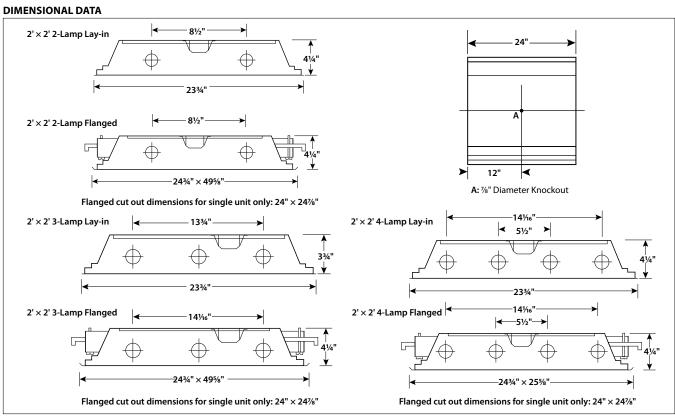

Fixtures are installed from below the ceiling and have overlapping trim flanges. Adjustable Uni-Lugs secure the fixture to the ceiling structure. Plaster frames are available if required.

CERTIFICATION

All luminaires are built to UL 1598 standards and bear appropriate UL and cUL or CSA labels. Wet location labeling is standard.

ORDERING INFORMATION

EXAMPLE WT22-417G-FAA12-EU

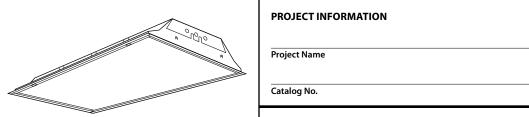

rage 1/2 nev. 02/03/11

WT22

PHOTOMETRIC DATA - CONTACT FACTORY

NOTE: All dimensions are in inches; dimensions and specifications are subject to change without notice. Please consult factory or check sample for verification.

Page **2/2** Rev. **02/03/11** LENSED TROFFERS / **WT22**



Type

Date

2' × 4' Wet Location Lensed Troffer / 2, 3, 4, or 6-Lamp T5, T5HO, T8

FEATURES

- Wet label shallow housing troffer
- Gasketed to provide additional seal between door, lens, and housing
- · Mitered corners standard on door frame
- Rolled or hemmed housing edges
- · Mechanical light trap
- All metal parts are white powder coat, painted after fabrication
- UL listed 1598 for wet location covered ceiling applications
- Integral T-bar clips quickly secure fixture to the grid system without the need for time-consuming loose parts
- Snap-in ballast covers can be removed when lamps are installed
- Corner hinging for easy insertion and removal of shielding frame
- Flush steel shielding frame, screw assembled for easy diffuser replacement
- Housing ends are secured by unique corner interlock and screws
- Heat sink embossments behind ballasts for cooler operation and longer life
- Metal to metal light leak protection on all four sides of shielding frame

FLANGED FEATURES

Four adjustable Uni-Lugs for quick easy installation. Optional plaster frames available for individual or row mounting. Fixture end flanges are removable for row mounting. Joiner channels are included.

HOUSING

Heavy gauge steel. Die formed for extra rigidity. Designed for installation in standard inverted tee grid ceilings.

BALLASTS

Energy efficient, thermally protected, automatic resetting, Class P, high power factor, sound rated A, unless otherwise specified. CEE NEMA Premium compliant.

ELECTRICAL

Standard class "P," thermally protected, autoresetting HPF ballast, sound rated A. CEE NEMA Premium compliant. All ballast leads extend a minimum of 6" through access location. NEC/CECcompliant ballast disconnect is standard.

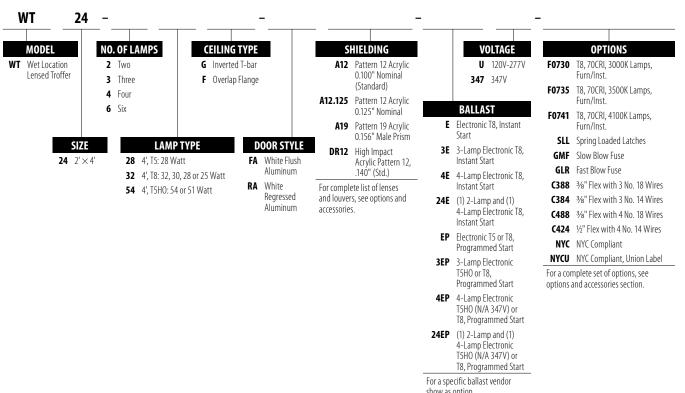
FINISH

All metal parts are processed with a five phase phosphate bonding treatment. Grid units are pre-painted with high glass baked white enamel, 86% reflective. Flanged units are painted after fabrication with a polyester powder coat, reflectance of 90%.

SHIELDING

100% prismatic acrylic, extruded and rollembossed, diagonally oriented female prisms, unless otherwise specified.

FLANGED UNIT INSTALLATION


Fixtures are installed from below the ceiling and have overlapping trim flanges. Adjustable Uni-Lugs secure the fixture to the ceiling structure. Plaster frames are available if required.

CERTIFICATION

All luminaires are built to UL 1598 standards and bear appropriate UL and cUL or CSA labels. Wet location labeling is standard.

ORDERING INFORMATION

EXAMPLE WT24-332G-FAA12-EU-C488-GLR

Page 1/2 Rev. 02/03/11 LENSED TROFFERS / WT24

LUMINAIRE DATA

Test 13747 Test Date 12/3/04

PHOTOMETRIC DATA

ENERGY DATA

Luminaire	WT24-332G-FSA12-3E-PAF WT Lensed Troffer
	2' × 4' 3-Lamp with A12 Pattern Acrylic Prismed Lens
Ballast	B232I120RH-A
Ballast Factor	0.88
Lamp	F32T8
Lumens per Lamp	2900
Total Input Watts	87
Mounting	Recessed
Shielding Angle	0° = 90 90° = 90
Spacing Criterion	0° = 1.25 90° = 1.37
Luminous Opening	Length: 3.82
in Feet	Width: 1.82
	Height: 0.00

Zone	Lumens	% Lamp	% Fixt.	Total Luminaire Efficiency	
0-30	2086	24.0	29.5	Luminaire Efficacy Rating (LER)	
0-40	3448	39.6	48.8	ANSI/IESNA RP-1-2004	
0-60	5916	68.0	83.8	Compliance	
0-90	7064	81.2	100.0	Comparative Yearly Lighting	
0-180	7064	81.2	100.0	Energy Cost per 1000 Lumens	

INDOOR CANDELA PLOT

ZONAL LUMEN SUMMARY

AVG. LUMINANCE (Candela/Sq. M.)

	90
	75
1400	
	60
2800 0 15 30 49 Horiz 0-180	5

45.0 ----- 90.0 ----

		0.0	22.5	45.0	67.5	90.0
	0	4056	4056	4056	4056	4056
Angle	30	3903	3992	4160	4287	4321
ŝ	40	3705	3846	4091	4271	4333
e	45	3525	3689	3946	4143	4208
Ĕ	50	3249	3430	3702	3890	3945
<u>na</u>	55	2888	3096	3374	3523	3579
Luminance	60	2524	2731	2973	3100	3196
	65	2235	2370	2517	2641	2795
Average	70	2023	2073	2069	2200	2381
ē	75	1956	1956	1741	1896	2070
Š	80	2095	2015	1658	1783	1863
	85	2327	2221	1830	1759	1794

COEFFICIENTS OF UTILIZATION (%)

	RC	80			70			50			0		
	RW	70	50	30	10	70	50	30	10	50	30	10	0
	1	89	85	82	79	87	83	80	78	80	78	75	69
	2	81	75	70	65	79	73	69	64	71	66	63	58
	3	74	66	60	55	72	65	59	54	63	58	53	50
	4	68	59	52	47	66	58	51	46	56	50	46	43
ž	5	63	53	46	41	61	52	45	40	50	44	40	37
ž	6	58	48	41	36	57	47	40	35	45	39	35	33
	7	54	43	36	31	53	43	36	31	41	35	31	29
	8	50	40	33	28	49	39	32	28	38	32	28	26
	9	47	36	30	25	46	36	30	25	35	29	25	23
	10	44	33	27	23	43	33	27	23	32	27	23	21

RCR = Room Cavity Ratio

 $\mathbf{RC} = \text{Effective Ceiling Cavity Reflectance } \mathbf{RW} = \text{Wall Reflectance}$

DIMENSIONAL DATA 2' × 4' 2-Lamps Lay-in 23¾" $2' \times 4'$ 2-Lamps Flanged A: 7/8" Diameter Knockout 24¾"×49%"- $K: 2" \times 3"$ through hole for access plate Flanged cut out dimensions for single unit only: 24" × 48%" $2' \times 4'$ 3-Lamps Lay-in 2' × 4' 4-Lamps Lay-in 133/4 51/2" 23¾" 23¾" 141/16 2' × 4' 4-Lamps Flanged 2' × 4' 3-Lamps Flanged 141/16 < 5½" ≻ 24¾"×49%" -24¾" × 49%" Flanged cut out dimensions for single unit only: $24" \times 48\%"$ Flanged cut out dimensions for single unit only: 24" × 48%"

NOTE: All dimensions are in inches; dimensions and specifications are subject to change without notice. Please consult factory or check sample for verification.

Page 2/2 Rev. 02/03/11 LENSED TROFFERS / WT24

DESIGNER WALL PACK – ROUND

SUBMITTAL:

JOB:

TYPE:

VOLTAGE:

WPRD ▼ SERIES # OF WATTAGE LAMPS

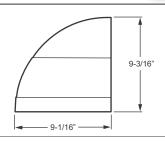
В

1 42T - GX24q-4 - WD LAMP BASE

DISTRIBUTION

OPTIONS

OPTIONS - UNV


VOLTAGE

SERIES

FEATURES

- ► Overall dimensions: 18" x 9-3/16" x 9-1/16".
- ► Heat and impact-resistant tempered glass lens.
- ► Heavy-duty die-cast aluminum construction.
- ► Fully gasketed for wet locations.
- Provides full cutoff.
- ► Dark bronze finish only.

WPRD SERIES

HOUSING — Die-cast aluminum.

REFLECTIVE **SURFACES** — Aluminum reflector.

LENS — Tempered, flat, clear glass.

LAMP OPTIONS (Must specify)

COMPACT ELLIORESCENT

 UNIFACIFLU	DUESCEINI		
# LAMPS	WATTAGE	LAMP BASE	
1	260	G24q-3	
1	32T	GX24q-3	
1	42T	GX24q-4	

DISTRIBUTION (Must specify)

WD	Wide Distribution
FD	Forward Throw Distribution

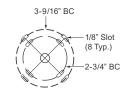
OPTIONS

SF	Single Fuse (120V or 277V only; must specify voltage)
DF	Double Fuse (208V or 240V only; must specify voltage)
GMF	HLR-GMF Style Slow Blow Fuse (Factory installed inside of unit. 120V and 277V only; must specify voltage)

VOLTAGE (Must specify)

	120	120V	208	208V	
	240	240V	277	277V	
	UNV	120-277V			

ELECTRICAL

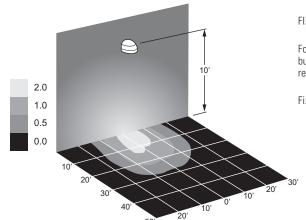

4-pin socket, electronic ballast standard. Prewired at factory for easy field installation. Rated 0°F minimum starting temperature.

FINISH

Powder coated finish on heavy-duty die-cast housing. Dark bronze finish only.

MOUNTING

BOLT CIRCLE PATTERN DETAIL


MOUNTING

Wall mounts directly over a 4" maximum recessed outlet box.

CFL

FOOTCANDLE ESTIMATOR

FIXTURE: WPRD-142T-GX24q-4-FD

Footcandle calculations based on standard building reflectance of .10 with a ground reflectance of .0 and a light loss factor of .75.

Fixture installed at 15' mounting height.

LABELS

cCSAus certified as luminaire suitable for wet location.

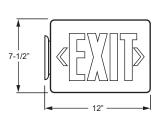
LED EXIT SIGN SUBMITTAL: JOB: TYPE: X VOLTAGE: EXAMPLE: EXIT - R - EM - WHT - OPTIONS

SERIES

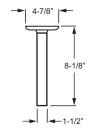
FEATURES

 Available as full-time AC powered unit or emergency unit with battery backup.

LETTER


POWER OPTIONS

HOUSING COLOR


► LED lamp life of 25 years.

SERIES

- Provided as universal single face/double face unit.
- Ni-Cad battery on emergency (EM) units provides 90 minutes of emergency operation.
- Automatic, low voltage disconnect (LVD) activates EM unit in event of partial power failure or brownout.
- Universal mounting canopy for top or side installation.
- ► Energy consumption of 3.2 watts for red letters and 3.8 watts for green letters.
- ► Charge rate/power on LED indicator light.
- Removable directional indicators.
- Available with industry-standard white or black housing.
- Custom messages available, consult factory for details.

OPTIONS/ ACCESSORIES

EXIT SERIES

HOUSING — Injection-molded, VO flame retardant, high-impact thermoplastic housing.

ELECTRICAL —

Universal transformer for 120 or 277 VAC operation. **MOUNTING** — Universal mounting canopy included for top or side installation.

LETTER COLOR (Must specify)

				_
R	Red	G	Green	

POWER OPTIONS (Must specify)

AC	AC operation	EM	AC operation with emergency battery backup

HOUSING COLOR (Must specify)

BLK	Black	WHT	Industry-standard white

OPTIONS

COPY	Consult factory for custom message	SALIDA	Salida faceplate (industry-standard white only)
DC	Dual circuit	SDT	Self-diagnostic test

ACCESSORIES

WG Wireguard

LABELS

Listed to UL 924 standard as an exit light suitable for dry or damp location.

EXIT		LED EXIT SIGN
	<u>I</u>	

